Analyzing Data
Analyzing Data
-
This lesson gonna teach us how to use twitter dataset to analyze the data.
-
This the dataset in general social network data, for this in particular tweeter.
-
Introduced The Agregation Framework, MongoDB powerful data anaylisis, to analyze what kind of data we've been working on.
-
Here is the step to extract the user who tweeted the most based on the structure of data twitter above.
-
The Agregation Framework in MongoDB implemented this
-
the framework using pipeline to solve the problem.
-
First it uses group operator, where the id(unique) means that we group all the tweet based on the uniqueness(id) of user screen name. the "$user.screen_name" doesn't mean operator, but value of "user.screen_name". Then for every tweet based on the same username, increment (count) to one.
-
The sort then perform the sorting based on count, on the descending(-1) order.
-
This is two-stage performed by the pipeline of agregation framework.
![](%0AIFhZWiAH3gAFABwADgAvABBhY3NwQVBQTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9tYAAQAA%0AAADTLWFwcGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFk%0AZXNjAAABUAAAAGJkc2NtAAABtAAAAYBjcHJ0AAADNAAAACR3dHB0AAADWAAAABRyWFlaAAADbAAA%0AABRnWFlaAAADgAAAABRiWFlaAAADlAAAABRyVFJDAAADqAAACAxhYXJnAAALtAAAACB2Y2d0AAAL%0A1AAABhJuZGluAAAR6AAABj5jaGFkAAAYKAAAACxtbW9kAAAYVAAAAChiVFJDAAADqAAACAxnVFJD%0AAAADqAAACAxhYWJnAAALtAAAACBhYWdnAAALtAAAACBkZXNjAAAAAAAAAAhEaXNwbGF5AAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAbWx1YwAAAAAAAAAeAAAADHNrU0sAAAAIAAABeGNhRVMAAAAIAAAB%0AeGhlSUwAAAAIAAABeHB0QlIAAAAIAAABeGl0SVQAAAAIAAABeGh1SFUAAAAIAAABeHVrVUEAAAAI%0AAAABeGtvS1IAAAAIAAABeG5iTk8AAAAIAAABeGNzQ1oAAAAIAAABeHpoVFcAAAAIAAABeGRlREUA%0AAAAIAAABeHJvUk8AAAAIAAABeHN2U0UAAAAIAAABeHpoQ04AAAAIAAABeGphSlAAAAAIAAABeGFy%0AAAAAAAAIAAABeGVsR1IAAAAIAAABeHB0UFQAAAAIAAABeG5sTkwAAAAIAAABeGZyRlIAAAAIAAAB%0AeGVzRVMAAAAIAAABeHRoVEgAAAAIAAABeHRyVFIAAAAIAAABeGZpRkkAAAAIAAABeGhySFIAAAAI%0AAAABeHBsUEwAAAAIAAABeHJ1UlUAAAAIAAABeGVuVVMAAAAIAAABeGRhREsAAAAIAAABeABpAE0A%0AYQBjdGV4dAAAAABDb3B5cmlnaHQgQXBwbGUsIEluYy4sIDIwMTQAWFlaIAAAAAAAAPNSAAEAAAAB%0AFs9YWVogAAAAAAAAc1AAADrMAAAB0lhZWiAAAAAAAABgfAAAuFwAABQ3WFlaIAAAAAAAACMKAAAM%0A2AAAvSNjdXJ2AAAAAAAABAAAAAAFAAoADwAUABkAHgAjACgALQAyADYAOwBAAEUASgBPAFQAWQBe%0AAGMAaABtAHIAdwB8AIEAhgCLAJAAlQCaAJ8AowCoAK0AsgC3ALwAwQDGAMsA0ADVANsA4ADlAOsA%0A8AD2APsBAQEHAQ0BEwEZAR8BJQErATIBOAE+AUUBTAFSAVkBYAFnAW4BdQF8AYMBiwGSAZoBoQGp%0AAbEBuQHBAckB0QHZAeEB6QHyAfoCAwIMAhQCHQImAi8COAJBAksCVAJdAmcCcQJ6AoQCjgKYAqIC%0ArAK2AsECywLVAuAC6wL1AwADCwMWAyEDLQM4A0MDTwNaA2YDcgN+A4oDlgOiA64DugPHA9MD4APs%0AA/kEBgQTBCAELQQ7BEgEVQRjBHEEfgSMBJoEqAS2BMQE0wThBPAE/gUNBRwFKwU6BUkFWAVnBXcF%0AhgWWBaYFtQXFBdUF5QX2BgYGFgYnBjcGSAZZBmoGewaMBp0GrwbABtEG4wb1BwcHGQcrBz0HTwdh%0AB3QHhgeZB6wHvwfSB+UH+AgLCB8IMghGCFoIbgiCCJYIqgi+CNII5wj7CRAJJQk6CU8JZAl5CY8J%0ApAm6Cc8J5Qn7ChEKJwo9ClQKagqBCpgKrgrFCtwK8wsLCyILOQtRC2kLgAuYC7ALyAvhC/kMEgwq%0ADEMMXAx1DI4MpwzADNkM8w0NDSYNQA1aDXQNjg2pDcMN3g34DhMOLg5JDmQOfw6bDrYO0g7uDwkP%0AJQ9BD14Peg+WD7MPzw/sEAkQJhBDEGEQfhCbELkQ1xD1ERMRMRFPEW0RjBGqEckR6BIHEiYSRRJk%0AEoQSoxLDEuMTAxMjE0MTYxODE6QTxRPlFAYUJxRJFGoUixStFM4U8BUSFTQVVhV4FZsVvRXgFgMW%0AJhZJFmwWjxayFtYW+hcdF0EXZReJF64X0hf3GBsYQBhlGIoYrxjVGPoZIBlFGWsZkRm3Gd0aBBoq%0AGlEadxqeGsUa7BsUGzsbYxuKG7Ib2hwCHCocUhx7HKMczBz1HR4dRx1wHZkdwx3sHhYeQB5qHpQe%0Avh7pHxMfPh9pH5Qfvx/qIBUgQSBsIJggxCDwIRwhSCF1IaEhziH7IiciVSKCIq8i3SMKIzgjZiOU%0AI8Ij8CQfJE0kfCSrJNolCSU4JWgllyXHJfcmJyZXJocmtyboJxgnSSd6J6sn3CgNKD8ocSiiKNQp%0ABik4KWspnSnQKgIqNSpoKpsqzysCKzYraSudK9EsBSw5LG4soizXLQwtQS12Last4S4WLkwugi63%0ALu4vJC9aL5Evxy/+MDUwbDCkMNsxEjFKMYIxujHyMioyYzKbMtQzDTNGM38zuDPxNCs0ZTSeNNg1%0AEzVNNYc1wjX9Njc2cjauNuk3JDdgN5w31zgUOFA4jDjIOQU5Qjl/Obw5+To2OnQ6sjrvOy07azuq%0AO+g8JzxlPKQ84z0iPWE9oT3gPiA+YD6gPuA/IT9hP6I/4kAjQGRApkDnQSlBakGsQe5CMEJyQrVC%0A90M6Q31DwEQDREdEikTORRJFVUWaRd5GIkZnRqtG8Ec1R3tHwEgFSEtIkUjXSR1JY0mpSfBKN0p9%0ASsRLDEtTS5pL4kwqTHJMuk0CTUpNk03cTiVObk63TwBPSU+TT91QJ1BxULtRBlFQUZtR5lIxUnxS%0Ax1MTU19TqlP2VEJUj1TbVShVdVXCVg9WXFapVvdXRFeSV+BYL1h9WMtZGllpWbhaB1pWWqZa9VtF%0AW5Vb5Vw1XIZc1l0nXXhdyV4aXmxevV8PX2Ffs2AFYFdgqmD8YU9homH1YklinGLwY0Njl2PrZEBk%0AlGTpZT1lkmXnZj1mkmboZz1nk2fpaD9olmjsaUNpmmnxakhqn2r3a09rp2v/bFdsr20IbWBtuW4S%0AbmtuxG8eb3hv0XArcIZw4HE6cZVx8HJLcqZzAXNdc7h0FHRwdMx1KHWFdeF2Pnabdvh3VnezeBF4%0AbnjMeSp5iXnnekZ6pXsEe2N7wnwhfIF84X1BfaF+AX5ifsJ/I3+Ef+WAR4CogQqBa4HNgjCCkoL0%0Ag1eDuoQdhICE44VHhauGDoZyhteHO4efiASIaYjOiTOJmYn+imSKyoswi5aL/IxjjMqNMY2Yjf+O%0AZo7OjzaPnpAGkG6Q1pE/kaiSEZJ6kuOTTZO2lCCUipT0lV+VyZY0lp+XCpd1l+CYTJi4mSSZkJn8%0Ammia1ZtCm6+cHJyJnPedZJ3SnkCerp8dn4uf+qBpoNihR6G2oiailqMGo3aj5qRWpMelOKWpphqm%0Ai6b9p26n4KhSqMSpN6mpqhyqj6sCq3Wr6axcrNCtRK24ri2uoa8Wr4uwALB1sOqxYLHWskuywrM4%0As660JbSctRO1irYBtnm28Ldot+C4WbjRuUq5wro7urW7LrunvCG8m70VvY++Cr6Evv+/er/1wHDA%0A7MFnwePCX8Lbw1jD1MRRxM7FS8XIxkbGw8dBx7/IPci8yTrJuco4yrfLNsu2zDXMtc01zbXONs62%0AzzfPuNA50LrRPNG+0j/SwdNE08bUSdTL1U7V0dZV1tjXXNfg2GTY6Nls2fHadtr724DcBdyK3RDd%0Alt4c3qLfKd+v4DbgveFE4cziU+Lb42Pj6+Rz5PzlhOYN5pbnH+ep6DLovOlG6dDqW+rl63Dr++yG%0A7RHtnO4o7rTvQO/M8Fjw5fFy8f/yjPMZ86f0NPTC9VD13vZt9vv3ivgZ+Kj5OPnH+lf65/t3/Af8%0AmP0p/br+S/7c/23//3BhcmEAAAAAAAMAAAACZmYAAPKnAAANWQAAE9AAAAoOdmNndAAAAAAAAAAA%0AAAMBAAACAAAAEQBPAMABSwHvApUDWgQ+BTQGRgdlCKYJ4Qs9DJkOAQ9tEOQSZBPrFWMW4RhkGd4b%0ATRy2Hh0fciC6IfIjHyQ3JUEmRydDKDopNSooKx4sES0ELfcu6C/aMMwxvzKyM6M0kjWCNnA3XThI%0AOTU6HjsGO+481z3APqo/mkCPQYpCiUOLRI9FkkaTR5RIlUmVSpRLkUyOTYtOiE+FUINRg1KEU4NU%0AhFWEVoJXgVh/WXtaeFtzXG5daV5kX2NgZWFrYnVjgWSOZZtmp2ezaL5pyGrRa9ps423sbvZwA3ES%0AciVzOXRQdWd2fXeReKd5unrOe+F88n4DfxCAGoEggiODIoQghRyGGIcUiA+JCooEiv2L9ozvjeiO%0A4Y/ckNiR1ZLTk9KU0pXRls+XzZjKmciaxJvAnLyduJ61n7Sgt6G+osij1KTipe+m/agKqRaqI6su%0ArDmtRK5Or1iwYLFnsm2zcrR3tXu2freBuIS5h7qJu4u8jb2Ovo+/ksCVwZrCn8OkxKrFrsaxx7XI%0AuMm7yr3LvszAzcHOwc+/0LvRtdKs06LUl9WM1oHXdthq2V3aUdtE3DfdKt4c3w3f/uDt4drixeOx%0A5JvlheZv51noQukr6hTq/evm7M3tte6d74XwbvFY8kLzLfQZ9QX18Pbc98b4sfmc+ob7cPxa/UP+%0ALf8W//8AAAARAE8AwAFCAdEChwNSBCUFGgYuB0gIbgmzCwIMYg2+DyYQkxIKE4kVBBZ7F/oZZhrZ%0AHD4dmB7rIDQhaCKPI6kktSW4JrcnsSioKZ8qliuLLH4tcS5iL1UwRzE7Mi0zHzQRNQE18jbhN9A4%0AvjmqOpY7gDxrPVU+Pz8qQBpBDkIEQv1D9kTvRehG4UfYSM5JxEq4S6xMoE2SToZPeVBwUWlSZlNj%0AVGJVX1ZdV1pYVVlRWktbRVw+XTdeMV8rYChhJ2IoYypkLGUvZjBnMWgxaTFqMGsvbC1tLG4sby5w%0ANXFBclFzZHR6dY92pXe5eM554Xr1fAd9GX4pfzeAQ4FKgk+DUIRQhU+GTodMiEmJRopCiz+MOo02%0AjjGPLZAqkSiSKJMnlCeVJ5YmlyWYJJkimiCbHZwanRaeE58RoBKhFKIYox+kJ6UvpjanPahEqUuq%0AUqtXrF2tYq5nr26wdrF/somzlbShta22ubfEuM+52rrju+28974AvwjAD8EWwhzDIcQlxSnGLccw%0AyDPJNco3yznMO808zj3PPtBA0ULSRdNI1EvVT9ZS11TYV9lZ2lvbXNxe3V7eXd9a4FPhSOI44yXk%0AEOT55eLmyuey6Jrpgepo60/sNu0d7gPu6+/U8MHxsPKi85b0jPWB9nb3a/hg+VX6Svs+/DH9Jf4Z%0A/wz//wAAABEATwDAAUIB0QJ4AzgECwUABgAHHwhSCYgKzAwpDYEO5hBTEc0TQBSzFiwXpBkYGoob%0A8B1RHqcf7yEwIl8jfySVJaQmriexKLMptSq1K7Ussi2vLq4vrDCoMaQyoDObNJc1kjaKN4M4fDly%0AOmY7WjxNPUA+ND8qQCNBHkIcQx1EHUUgRiBHIEgeSR1KGUsWTBBNDE4HTwJP/1D8UftS+lP8VPxV%0A/Fb7V/lY9lnyWu5b6VzkXd9e21/YYNZh12LZY91k4WXjZuVn52joaelq6WvobOdt527ob+1w9nIC%0AcxJ0JHU2dkl3W3hteXx6jHucfKp9t37Cf8mAy4HJgsSDu4SyhaeGnIeQiIWJeIpri12MT41BjjOP%0AJ5AckRSSDZMJlAaVA5YAlv2X+Zj1mfCa65vlnOCd2p7Tn8+gzKHKosqjy6TMpc6mzqfPqM+pz6rN%0Aq82sy63KrsmvybDKsc2y0bPVtNq137bjt+e46rntuvC78rz0vfW+97/3wPfB+ML4w/jE+MX3xvbH%0A9cjzyfHK78vtzOrN5s7jz+DQ3NHY0tPTztTI1cLWvNe12K7Zp9qf25jcj92H3n3fc+Bn4VniSeM4%0A5CblE+YA5uzn2OjE6bDqm+uG7HHtXO5H7zTwI/EX8g/zC/QK9Qr2CvcK+Ar5CfoI+wf8Bv0F/gP/%0AAf//AABuZGluAAAAAAAABjYAAKZFAABVtQAATMwAAJ5IAAAk8AAADQ4AAFANAABUOQACI9cAAgKP%0AAAH9cAADAQAAAgAAAAUADAAVAB4AKAAyAD0ASABTAGAAbAB5AIcAlQCkALMAwwDTAOQA9QEIARsB%0ALwFDAVkBbwGHAaABugHVAfICEQIyAlYCfAKmAtQDBAM4A28DpwPjBCAEYASiBOYFLQV1BcAGDAZb%0ABq0HAQdYB7EIDghsCM4JMwmaCgMKbwrbC0cLsgwdDIkM9g1lDdcOSw7BDzoPtRAzELQRNhG7EkIS%0AyxNVE+AUbhT+FZAWJRa8F1YX8xiSGTQZ2RqAGykb0hx7HSMdyx50Hx4fyiB5ISoh3SKTI0wkByTE%0AJYQmRScHJ8koiylNKhAq0yuZLGEtLC34LsgvmTBtMUQyHTL6M9w0wzWwNqI3mTiUOZI6kzuXPJ09%0Apz60P8RA10HsQwREHUU3RlJHbkiLSapKzEvxTRlORE9yUKNR11MOVEhVgla9V/ZZLFphW5Vcyl4B%0AXzpgdmG1YvZkOmWBZstoF2lnarpsEW1sbspwLHGRcvl0ZHXSd0N4t3oue6d9JH6kgCWBqIMrhK+G%0ANYe9iUiK14xpjf6PlpExks+UcZYVl72ZaZsbnNSek6BZoiSj9KXGp5ypdqtTrTOvF7D/sum02LbL%0AuMO6wrzHvtPA48L4xRHHLclNy3HNmc/F0fTUKNZf2Jna1t0U31LhkuPT5hfoX+qq7PrvTfGk8//2%0AXvjA+yf9kf//AAAABQANABUAHwApADMAPgBKAFYAYgBvAHwAigCZAKgAuADIANkA6gD8AQ8BIwE3%0AAUwBYwF6AZIBrAHHAeQCAgIiAkUCagKTAr4C7gMgA1UDjQPHBAMEQQSCBMUFCwVSBZwF5wY1BoUG%0A1wcsB4MH3Qg5CJgI+glfCcYKMAqcCwoLeAvmDFYMxg05Da4OJQ6fDxwPmxAdEKIRKRG0EkASzxNe%0AE+4UfhUQFaMWORbRF2wYChiqGU0Z8xqbG0Yb8xyhHVAd/x6wH2IgFiDMIYYiQSMAI8EkhSVLJhQm%0A3yerKHcpQSoKKtIrmixiLSwt+C7HL5gwazFBMhky9DPRNLI1lzaAN284YzlcOlg7WDxaPWA+aD90%0AQIJBk0KnQ75E10XyRw1IKklISmlLi0yxTdlPBFAyUWNSl1POVQhWRVeDWMFZ/1s9XHpduF73YDlh%0AfmLFZA9lXGarZ/5pU2qrbAVtX267cBZxc3LQdC91kXb1eFx5xnsyfKJ+FH+JgQGCfYP7hX2HA4iN%0AihqLqo09jtSQbZIJk6mVS5bxmJmaRZvznaOfVaEIor2kdKYtp+mpqatrrTCu+LDEspK0ZLY7uBe5%0A/Lvsvei/8cIDxBzGOshcyoHMq87Y0QrTP9V417TZ8twt3mTgluLF5PLnIOlS64btv+/68jn0fPbD%0A+Q37Wv2r//8AAAAFAA0AFgAgACoANQBAAEsAWABkAHIAfwCOAJwArAC8AMwA3QDvAQIBFQEpAT4B%0AUwFqAYEBmgG0Ac8B7AIKAisCTQJyApoCxQLzAyMDVgOMA8MD/QQ4BHYEtgT4BTsFgQXJBhMGXwat%0ABv0HUAelB/wIVgizCRIJdAnYCj4KpQsNC3YL4AxLDLgNJg2YDgsOgg76D3YP8xB0EPYRexICEooT%0AFBOfFCwUuhVLFd8WdRcOF6oYSBjpGY0aMxrbG4QcLxzbHYceNR7kH5YgSyECIbwieCM3I/kkviWE%0AJkwnFSfcKKMpaSovKvYrvyyKLVcuJy76L88wpjGAMl4zPjQkNRA2Azb7N/o4/DoCOws8GD0nPjo/%0AUEBpQYVCpEPFROdGCEcqSEtJbUqQS7dM4E4MTztQbVGiUtpUFVVTVpRX1lkYWltbnlziXihfcGC8%0AYgpjXGSwZghnYmi/ah9rgWzkbkhvrHEQcndz33VKdrh4KXmdexR8jn4Lf4uBDoKUhB2Fqoc5iMqK%0AX4v2jZGPLpDPknOUGpXEl3GZIZrVnIueRKABocGjhaVMpxeo5Kq2rIquYrA9shyz/bXjt8y5urut%0Avae/qMGxw7/F0cfoygPMIc5D0GnSk9TA1vHZJdta3YvftuHY4/TmDegm6kHsX+6B8KXyzfT49yb5%0AWPuM/cT//wAAc2YzMgAAAAAAAQxCAAAF3v//8yYAAAeSAAD9kf//+6L///2jAAAD3AAAwGxtbW9k%0AAAAAAAAABhAAAJy1AAAAAMZ65TAAAAAAAAAAAAAAAAAAAAAA/+EAdEV4aWYAAE1NACoAAAAIAAQB%0AGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAASAAA%0AAAEAAABIAAAAAQACoAIABAAAAAEAAAJ4oAMABAAAAAEAAADOAAAAAP/bAEMAAgICAgIBAgICAgIC%0AAgMDBgQDAwMDBwUFBAYIBwgICAcICAkKDQsJCQwKCAgLDwsMDQ4ODg4JCxARDw4RDQ4ODv/bAEMB%0AAgICAwMDBgQEBg4JCAkODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4O%0ADg4ODg4ODv/AABEIAM4CeAMBIgACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJ%0ACgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQz%0AYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOE%0AhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm%0A5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIE%0ABAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZ%0AGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SV%0AlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4%0A+fr/2gAMAwEAAhEDEQA/AP3wopSDk0+t7nHewz8aXbzQen406k2Nsbt96aeDUlIehoTENAzTgMCm%0AZpwNDuA6mt2pc80tICOigdac3arKTG96duptFJoadw71IDxxUdBPHXFDVxrc5fUvHnhbSPizoPgf%0AUtWhtfE+tW8txpdnIpBuUixv2nGMjPTOa6kmvzG/az1LxFN+3t4H8V+HJ7uS1+EWkQ+IdbghJxJD%0AdXHlSAj2iy30FfpVpmpWet+GdN1nTpUmsL62S4gdTkMjqGB/I1Tikkx2L+T6mjJ9TSUUhC5PqaAx%0AHekpw6UmAbjShjnk0uPQUYPoam6AM+/609TketGPl6Zr5Y8RfHHx34m+LGveCPgF8PrPxxc6FcG1%0A13xNrOomy0exuVxutlYKXmlXI3KgwM8mnGDkOx9TMeaUdK+dPhL8XPGWufGfxH8KPiz4W0nwp8R9%0AK0yLVYDpN41zYarYyOY/PgdlDDa4CspGQSOxr3/Ub1NN8P32oPDPOltA8zRQLukcKpO1R3JxwKJQ%0AadhF2kzzivlMfGL9oLW4vt/hP9mu9j0dmJhk8S+JrbT7mVOx8kbivb7xFd18O/ix4l8S/EK48G+O%0AvhX4p+HHiaG0N1G88iXmnXaKwVvKuoiVJBI+VsHHNU6UkFz3E8GlHSm8k077o5rMBaKM5pDntQDY%0AtFYSeJdAk8ey+Fo9a01/EkdqLqTTFnU3Cwk7fMKZyFzxmtv5qbTRPMOopvzUvPvSHcWimkketQi6%0Atvt/2T7RD9r2b/J3jft9cdce9AJliiijPFAwooppJzxQA6kyBTHkWOF5HbaiqWYnsBWB4Y8VeHvG%0Ang228Q+F9VttZ0ednWK6t2yjFGKsPqCCPwp2drkuR0WR615z8WPHV98OfgPrfi7S/Dl34s1K08tL%0ATSreURtcSSOqKNx6AFsk8nA6V6HXyn+1zNFN8J/hloEqTSLrHxL0a2IicqxCz+aeR2wlVTjzSSGp%0AMhm8dftZeHdLHibX/hR8OPE+gKglutG8MeIJjqsEeMts86NY5nA/hBGe2a96+HHxH8LfFT4W2Hi/%0Awhevd6XcFo5I5UMc1rMh2yQyoeUkVgQVNdztAQAdhxXyV4Egi8Gf8FX/AIqeENE8qLQPE/hW08T3%0AVlCPktr4TNbyPgfdMq7WPrtzVJKSeg+Zn1xTG+9TsjOM80xiocbiBk45rIpNsPwNFJx6CmyOkULy%0ASOscaAs7McBQOpNMeo4t6Cm/jXiusftIfAbQdRls9U+K/guC7jzvhXUUkYEHBGFzzWx4B+NPww+K%0AOrX1j4D8W6f4hu7OMSXEcAYFVJxu+YDIz6VooStsJI9S/GjNJRSGkLk+tGT60lFFhhRRRQAUVxlr%0A4/8ADF38c9S+HEN/nxZY6ZHqU9oYyMQO2wMG6HntXKfEX48/Cj4U6pb6f448XWWk6rcJvt9PVHmu%0AZh22xoCx/KnyvsCPXqK+Urf9rTw3q8yL4U+GHxs8WRs+1ZrLwfcJGffdKFGK+n9MvH1Hw9Z30lle%0AabJPCsjWt2oWWEkZ2uAThh3puEkrsN0XqKKYScnmpGlcfTSxzTaKCkrDtxo3Gm0UDHbjTe9FFABS%0A/wAJpKXOKADOVNJmlyaSgbY4E5opR0ooM27ktFN3UoOaixyjT96n0UUNjYUHoaKKQrkdOXpTsD0p%0AOxqm7gncWimZPqaMn1NHKMVu1NooppAFFFFMaCgsqgsxCqOSSeAKK8Q/aN8YzeCf2OPGWoWDuNcv%0A7caVo6ocO11dMIY9vuNxb8KaV3Y0R498EJPDXj/xR8fviP4ovNM/sbxhr0uiWaXlwirLp9qhtwBk%0A9CdxrX/Zb8WwaYPGvwD1LWrLVdb8A3xj0yeO4WQ3elyktbSDBOdqnYfcVW+Hf7FHwI8NfCbwxY67%0A4LXxHrNvZo15PqWoXEqyTsN0jbN+0ZYntXKfE74aeCf2d/jp8MPjf8OPCul+FdKj1MaB4yjsItiz%0AWd2Qscr8/wDLOULz2DVp7rbSHbQ+7a+X/FPxo8XeLvifqPw5+AGkabr+r6dJ5OveLdRLHSdGfoU+%0AXmeYf3FPHc17D8VIvEd5+y/48j8Eu58UTaBcjSGibDGUxNs2n+96e+K+d/gX8b/2ePCP7LugeHoP%0AFug+B7/TbQLrOlazL9lvYrvH79plfDM5fcS3OaUI+7zWuHU534bfH/XvBX7fHin9nb40+J59d1ye%0AO1uvDfiJ9ISytLlpotzWy7WIByG2buTgjrX3U8kcVtJLK6xxIpZnY4CgdSfavzl1DwLD+1R8WPjJ%0A8SPD9rfab4cTwxaaV4G1qaBopLvUrOWS5S9hzghFkZUDfxDNfWXwR8bL8XP2N/C3iHVoSl7qOmtZ%0A6zb9Clwm6GdPb5lalOHV79S7aHksXiv4oftH6tdp8NdZuPhd8Gre4aA+LVhV9T14oxVvsaMCsUOQ%0AR5rAk9hXJ+G9Z+KHwH/b58AfCXxN4xufH/w6+IVxqsujXusTmbUNNe2gieOFpcKHDfOxGOp46V03%0Ah/4cftLfCLw9B4L+F/iL4aeLvh/Zkx6LF4mint73ToSSRGzxArKFzgHg4FeUfGn4IfE+3+HV3+0d%0A498aweK/ix4Akh1nw9pmhwPb6Zp1rBIJLuGNG+aR5Yd4Z2/ujitEltdWMuU/SQHH5V8gfs9W8fw/%0A+KX7Ufha61qNfCeh+PRqFi14yxx2Md9ZQ3cylj/D5kjHJPevqTw7rlj4n8AaJ4k0uQTadqthDeWz%0Ag8MkqB1/Rq+UPh54d8O/Ej48/tn+EPFOnxav4b1TxZY6fqFm7FVmjGkWwZSQQRyPXtWMFo7/ANam%0ArL/gzVIfif8A8FUvFfjjw7LFfeD/AAL4N/4RhtVt33Q32o3VxHdTRow4YQpHGDjoz16/8e7uey/Y%0Aj+Ld5bSyQ3EHhDUZI5EYqysLaQggjkGvmj4cwWn7Hfxvt/g9fxm0+AnivUHm8Da3L00jUJeZNOuZ%0APRz80Ujdfuk9K+hf2kZXj/4J/wDxmljGT/wh2oDpngwODVNe9HsK+h5B8N/2sPgPoH7OPw70fxH8%0AUNHbxHa+GbCLUIVaS4lWYW0YYMVU5bPXvmvcPht8cfAfxZ8Q6xp/gqfW74abGrz3VzpM9tAwY4AR%0A5FAc98DtVj4V+FPC1n+zf8P2s/DOgW7Hw7YyFo9PiUljbxktkL1J5zXp6GPaY4yi7PlKrj5fbA6V%0AD5ddCWtD58+K/wAX/EWifE7SvhV8LPD1v4s+KWrWhu8XcxjsdHtA203V0w527uFQcsa8z8R/s++O%0AL74VeI/Ffj743fEzxP4zt9NmurOz8M3o0jT4JVQsqRRKCXGQOXY59K6Px94f+Jnw8/a9vfjT4A8J%0AxfEjRta0ODSvEegQXCQ38Agkd45rYvhX++wZCRnis/VPjx8WfFuiXXhzwF+zz8RtK8R3sTQR6h4q%0AhjstPsS2QZJH3EsFznCg5rZXSTiQ0emfsy/EP/haX7DHw68ZSXN3d39xpiwahJdKBKbmEmKXfjjd%0AuQ5r3diFQsxwoGSfQV8RfsU6RrHw78CfEr4G+ItTi1bWvBfiVpftaJsWeK9QXAdQf4fMMoFezftH%0AeOb3wF+yV4jvtGBl8T6mq6ToUXOXu7k+VH+RbPHpWUo3nZFRPjO50rxt4h/aD+KX7YHw/urmSfw1%0AqY0Sw0hFHla3pNqf9MU+rFiSjdilfoNp/jqHxH+zta/EDwVp03ieO/0xbzTbGKVUe4Zl4j3NwpBy%0Apz0wa+Ufhr+x94i0f4AaL4S8efHL4iXUNvaFJdN8NzR6baI0mWkyQrPISzNlmPNdP+yVpUnw4j+K%0AvwKfUr3UrTwX4j36PNePumNldL5sYJPXDbhn3q5tSV10GkaKaR+1/wCMh9qvPFfwx+EVjNytjaaf%0AJq97CPRnZkj3euMivGtW8EfGu5/br8MfCnUv2nPiJc6dfeH7jV9Um0zSrOxMYRgiJGQjYBJ5ya/R%0AbuSea+VdK+03/wDwWN8UO4JtdL+HdukZI6GW4yefwohUbv6C0bPoHwT4YuPB/wAO7LQbrxNr/i6e%0A3J3anrMqvcy5OfmKqo4+lfP8djLB/wAFkbi+M0phufhwAsZc7QVucZx0r6pz0NfLX20z/wDBYgWf%0AP+j/AA4z/wB9XOamm23JvsO2p0f7QHjG90rwz4d8B+G9S1zTvGvjDUVstNm0eNHuYIlw00w3/KoV%0AM8mvNNSm+PP7PeNZu9c1D4+fC2IbtSS5tUj17So/4pVMYC3CAckYDY9a6X9ovRNf0Xx58Nvjf4b0%0Am58QTeCLuX+1tLtgWmnsJ12ytGvd0+9jvV/W/wBq/wCCUXwPuPE2leLtN167uYDFZaDanfqFzOww%0AsHkfeD5OCCOK0inyqyuhnt2heKdI8efB228T+D9Yin0zU7Ey2N/Gu7ZlThip7qeqnuMV8Ifs8/Hj%0A4tWHji1s/jDqUPinwD4t8S32m+EvE/2Rbaa3mgkZVgnRflCuFJVs9sV758B/B+tfDT/gnsbHxHE2%0An6vJZ3+q3Fpu/wCPLzvMlEXttBx9a8D0nwPLq/8AwQj0WfTDJd63pdt/wkumy4+cTw3DT5B9SAw/%0AGnGMU3HzA/RpsH5TgqeCD3r5S/ZPSXSvh78TvCTrMkGgfEDU7W2Vz0jeXzVx6D5699+H/ii08bfB%0ALwn4rspFmt9U0yC5DKe7ICf1zXh37OF/Hq3ij4+ajArC3f4kXkaNjhiiRo2PxBrOKtCS9CHufUAb%0AnvXxV+2DZeNte8V/s8+GPh/quk6P4mu/Hf2q1utStjPbxNb20km50BBYYz09a+0h96vkv4sXFtff%0A8FR/2ZtDkuljmtbTWdSEDf8ALTECxgj3GTSpaSuJlqXw1+2Vf2q2knxI+CejxuNst9Z6BdyzL6si%0AOwXPpk16P8JPgtp3wwuNc12+8Qaz448f68UOu+JtWYefchPuRIg+WKFcnCLx9a9lBO7qadk+pqHN%0A2sUrHzVrmu3S/wDBWbwH4ctdR1JbZvh1qN3f2S3B+zt/plusTsnTcD5gB64NeW/tO6F438efttfs%0A7fDPRPibrPgHwvqtxf6lqcehgR30j2UJlR/MORsyVXaQRk5rsvDDy6r/AMFm/ilc3NveiPQ/h5pd%0AjZSyW58r9/PLPJtfucqmR7GvMfj18Qb7wV/wVj+FGvW3gXX/ABzpnh3wJqE+r/2LH51zp0N3cxQm%0A48ocuFEfQDOGNdCVpK3YcWj0q4/Zz+JuhQSan4C/aV+Jg8RRjdBD4nS31CwnbrskjCIwU9MqwIrP%0AT4+3eu/8Eufih4/8T6Zbab4s8NWuqaJr9laOXg/tC3zAxiPUo5ZGGem7HapNT/aW8QePrOTw/wDA%0AD4b+L/Efia6UxjV/EGlS6dpWl5z+9meUAtt6hVBJ6V5f8b/h9a/B/wD4JWaf8PLjVZdV1LxP4502%0ALxDrJ/di7vL7UI5LmZh/ChwQAeigUJN259yro6H4UeN/2Z/gh+zp4H8F+Ldf+H3/AAn2laJbprbw%0AaXHJdtdPGHkD7ELFgXI55r6c+GnxQ+HnxLOrzeAobmS3sNiTXb6PJaRybugRnRd/TnHSuqt9P8A2%0Al5JNaWfg63uZJN8sscUCyO/dmIGS3uea2pdV0m3SESalpsKSSCKEeegDueAo55J9KzbT2TAbq9z9%0Aj8JareeZ5XkWcsm/P3dqE5/SvIf2b/Euv+MP2J/AnibxPqX9r6xqNvNNLd7QpkX7RKqZAGOFCjNd%0AL8Zdcj8Nfso/EbXJsbbTw7dyYLbcnyWwM/WuB+CuoeFvhd+wD8J7DxV4i0Xw9HbeF7V5Wv71IsNJ%0AGJT1Pq5ppe58xH0RXz54k8aeJLH/AIKTfDXwLZ3pXwvqnhbUbzUbXywd0sRTy23dRjNdp4L+NHwt%0A+Ivii70bwP410bxPqFtEZZo7GXftUHBOenU147oefFH/AAV/8Yahu3Wvg7wPb2K/Nws13MXPHrsS%0AnGDV79gNX9rnxJ8U/BP7F3iLxv8ACbxBpOha7oC/broahaLMl1br9+MbjhTjoa9f+Ffiw+PP2Z/A%0AXjR57e5l1nQ7a7mkgI2NI8YL4x/tZFeDftb3EOv/AA78B/CDzo0l8f8Aiq10y4Vjgm1VvMn/AA2q%0AR+NZHwPvrf4HftCeJf2cdduUsvDUkjav8O7i5faktq5zLZqx4LRtkgehocW4KwdTqPDMFnP/AMFc%0AviPd+VG15b+ArGLzO6hpycfjXmf7VvxE8I+Ev2nfgFperu9ldNrj6pfXFhYNPePbW6ZEYCKWKsxA%0Ax0rtvgxPD4r/AOCif7RPjjTbg3eiWqWGgwTrzG8sSs8oVhwcEgGkn1Pw/b/8Fg7258WarpmlPYeA%0AY10EX7rEJWkm/fGNmOCQAM4q/tPyQI2rb9pnUPEWqW0Hgv4GfGXX7eaZU+3XGj/YLdVJ5ctMV4A5%0A6V9Pxs728byIYnZQWQnJUkcivLdd+N3wq8P+I9H0jUfHnh46rql6lnZWlveLNLJK5wo2qSQPevVW%0AyAR3rGSslpYvpuFNIGetJk+poP3qkqMRD1opexpKBsKKKKBBRRRQAUUUUAFFFFABk+tFSDoKKCeY%0AKcvelAxSN2qW7nKOprdqF706lswYzJ9TRk+pp+B6U1u1NMSYmT6mkyfWiiqGFFFFABRRRQAUUUUD%0ATsFfK3xztJ/F37Wn7PPgARyS6YNauPEGpAKSm21jxEGPT775/CvqtelQPb27X8dy0ELXMalUlKAu%0AoPUA9QKqE+WVy1Ilrzf4v+AT8Uf2aPGPgBbyHT5NasDbxXcse8W77gyyY9QVBr0iiknZ3LTuY3hz%0ATbnRvAGiaTd3f2+7srGK3muQMeayIFLY98ZrG1j4c/D7xDrq6pr/AIH8Ja1qSkEXV7pMM0vHI+Zl%0AJrsqrzXlpbzRRXF3bQSynESSShWc+gBPP4U+aV7oTJbaGG0tYbe1hhtreNQscUSBUQDoABwBXyr+%0AyzjTx8dfCqPm20T4parFbIOkccrrOAPxlP519VtIkcTSyuscSDc7scBQOpJ9K+U/2Vgmsaf8aPiD%0AbBjpHi74jX99pUvaa3jKwLIPZjESDVR+GRXY+rT94VV1GwtdX8Najo19GstlfWslvcIRwySKUYfi%0ACat4yRTJZobW2lubmWOC3hQySySNhUUDJYnsABmsmNM+Xv2NdRvJP2H9N8K6i7S6j4M1vUfDEzFs%0Akizu5Yo//Ieyn/BP4ReMvAv7ZX7TPj3xBqEUvh/xx4is7zQLSGcsEiitgjyMv8Lk4X6LWX+xsjXv%0AwG+IfjKFHXSPF/xM1vW9IYrjzLWS48uOQezeUWHsa+tjweOK1nK0pJdQeiON+IXgTw58TPhBrvgn%0AxXp8Oo6Nqds0UiuPmjbHySIequrYYMOQRXM6f8Nryf8AYoHwk8V+IbjxJdz+GJNEvtZmXElwGiaI%0ASsP7wBH1Ir1eiou7WJPiLw34M/bF/wCFZeH/AIZXPiT4deCdD0nT49Ok8X2HmXmo3cESiNXSFgEj%0AkKhfvE4Oa+jvhZ8KNH+FPhC+0/T9Z8S+ItR1G6+16rquuX7XNxeT7cF+eEHoqgAV6hk+ppM03Jsm%0A4oPHHrQWJGCc/WkoqbCPk/QXTw//AMFl/Genq4WPxV8PLa+MYHWW1uTGT9dsldj8Vvhv4q+IH7TX%0AwU1CCayi8B+F9Xl1fWIpH/eXE6RkW6he4DHOe2K5XVpLaT/gsl4Jhgj3XkPw51B7lgPuo1xCEz+I%0ANfVZJz1NaSfK012BEx5r5S0m3vtC/wCCu/igLp92ukeJfAsExuhC3lGe2mxgv03bW6V9TZPqaTje%0AGwNw6HHNRB8tyuYl9q+d/CHhjxNaf8FHPir4t1DTp4fDl74e0+0028b7krIzF1H0r6GDDaMnmkZs%0AnqamLsmiI6Mee1fPGpfDHxh/w8l0H4s6Tf6bF4SPhWXSdatpSTPI+8PEUHp1ya+hBznrS4PqacJO%0ALZV9binkYIBHoRXGw/DzwFa+ND4ktPBPhO28QE5OpRaTCtwT67wuc+/WuvOQeppwNSm1synNdjJ1%0AvSzrXgvWNIZxH9uspbfeRwu9Cuf1rhPhF8Orj4e/sseGvhzrN/a622m2LWk08URWOZCW4wfY4r1I%0A8imkHPWnzu1iVM+ANA+IV9+ya3i34X+NtG8R6r4V82e9+HOpafYSXKXSyksunsUB2SI5wM8Yr6C/%0AZp8E6x4I/ZT0yLxNCbfxRrV1PrOrxN1jnuZDKUPuoYL+Fe9OgfAdVfacjcucH1pxznmtJVLr1E2A%0A+9XkGtfCCx1z9tjwZ8ZLvU5DceHNAutMstP8sbd1w6lpd3rgYx717Cp+WkYndWak76CTuLjDGlpm%0AT6mjJ9TS5RiCOFJnlCIsrgBnCjLAdMnvXyn4BjGu/wDBWn49eIAqtHoHhbRdBilVycNJ511IuOx5%0AX9K+rhy4+tfK/wCzXY6jN8Qf2jvGOqaZd6dNr3xMuY7U3EJjaa2tIIreJwD1U7Wwe/NawT5WwTsz%0A6qDfLjgVyXjPwT4T+IHgW78L+M9DsfEWgXTK09ndKShZTlWBBBDAjIIIIrqaKzWjui73Pm3/AIZE%0A/Z3Kgj4dxI3XcmrXgI/8i1nWn7HHwGsPF+l63a+H9fW606+jvbSN/Ed48KSxsGVtjSEHBAr6jorT%0Anl3B2RyfjzwXofxH+EfiDwR4miuJdB1m0e1vUglMchjbg7WHQ+9eL+Ff2SPgP4WNrJL4OPi69to1%0ASG78UXsupOiqMKAspKAAcABa+lKKSnJKyYroyNK0HQdCtxDomh6PosQGAljZxwAD0woHFZ2leEPD%0A2jfELxH4p02wFvrmuiEapc7yTP5KlY+OgwGPSuoopczKPK/GHwg8K+OPj38OviFrrX8mq+C55p9J%0At0kxCZJF273HcjtV74kfCnwD8WvC9vpHj3QIdYgtpvOtJklaG4tn/vRyoQyH6GvRG7U2nzy012KS%0AOR8CeAvCPwz+HVt4U8E6PFouiQMziFGLs7scs7uxLMxPUk5rP8efCj4b/FCwtrfx/wCDdD8Upb5+%0AzvewZkiz12uMMv4Gu+ozS5ne9x8qPI/C/wCz98EvBeq2uoeF/hh4P0rUbdg0F2tgrzRn1V2ywPvm%0AvXSSWOTmkoobb3YJWClzSUUhi5OKSiigAqQdBUdGT60CauKfvUlFFAwooooAKKKeAMdKBN2EXrRQ%0AB8xooJZNRRRWZxDTx04oXvQ3am1SWha1Q5u1NooppCSCiiimUFFFFABRRRQAUUUHpQA9elI3am5o%0A70ralKNwo70Ud6ZUVZiE8ivm/wCOfwAb4reNvBPjfQfFd74S8eeEpWk0i5IMtnIGOds0OQG55B61%0A9I0VUJuLujRq6PkTUPgz8fPHunyaH8TfjjYweFJxsvbHwlo/2Oa8iPDRtMxJUMMg7fWvp3wv4a0X%0Awd8PtI8LeHLKLTtE0y2W3s7eMYCIowK3qKcpuQtjwv46/D/4mePPCXh1fhd8SW+Hmt6Vqi3k3mW/%0AmW+pIuMQzY+YLkdvU15rqHwS+OXxLtv7J+MvxjsLfwbKAt9oPgvTjZm+T+KOSdiXCMOCF6ivr6g8%0AnJoU2lYV0ZmhaNpHhrwZpfh/QbC30zRtOtktrO1gXakUaDCqB9BWoTk0lFZ21uPmCiiimTuw7VFO%0Asr2MywSCKcoRG5XIVscHHepaKB2Pz78F65+158Hfij4nm+LWi638cvCE7OdJuPCywKbZN+5S0RIf%0AO3jFeoJ+054rvXNvpH7Nfxour9gfLjubKOCPPu7NgCvrTJHQ4pdzep/Orck90Gx82fBTwF43f4v+%0AM/jP8VrSz0rxr4hgisNO0W2mEq6Pp0R3rCXHDSMx3MRxxX0o/wB+kHXk07j/ACaiUru5IyngYFNO%0AM8U4H5c1LAQ8tS9OKTPzZozlxQwFx82aWg9DQPu8mkA1utKPu0pIA6ZpQcj0ob0JbEzTWPPBpW+7%0AxmmU0gQ7dxSE5NJRTsPcMn1pT1pKePu0PQVrDKKc33qaetMadxR96g4AwBj6UlFKwwooopgFFFFB%0AS3CiiigoKKKKAGH71JUlNIOaCkxtFLg0negq4UUUUAFFFFABRRRQAUUUoGaAEopTwaSgAp+BimUZ%0APrQJoU9aAeRSUUDHk4oplFArFiio80oOKnlOAVu1NqSmsBxxQmUmNoowPSjA9KoOYKKc3am0JlBR%0ARRQAUUUUAFFFHvQNbhSdjR3pe9Bo72uxD3oHSlooEqmgUUUd6Bqdwooo70BzXdgooooKtYKKKKBO%0AwUUUUC2ClyfWkooC4UUUUCCiilHJoASnj7tAGDTv4RUtibsJSE4NOyfU0w/fFJC5hdw96UEEUHrS%0A4PvQHMR5JNPXOOf51HRk+tVYGSUUzJ9TSgkjGamwkrj8H0NMb734UrE4603BPNNDtYSjJ9adtNIR%0Ag07hzCUUUHrTGncKXNJRQMKKXtSUAFFFFA07BRRRQFwppPz06mn79BpEU/doP3KD92mUDSHA80h+%0A9SUUDtqFFFFAwooqQdBQJuxHRUlMP3qATuJRRRQMKKkHQUw/eoEncSiiigYU4/cptFAmh46CigDi%0AighoWilyaTrQcrJKa3am0UkhaBRR3opj5Q70UUUFCd80tGKKBsKKKKBBSd6Wg9DQAUmBnpS4HpSY%0AGelBpa2otFIcYNHegl66ge1IeMY4pf4jSnoaC4vlsJ1NLRSE4NBSFopODzSigXLqFFFFBLCiiiga%0ACiiigQUUU4DvRcBtPH3aDjdzSNgHjpS3AUHLU4/dFRjrUh+6KloUhKKKKRAUEnnmil5PegaYwHAp%0Adwp2KafummNsNw96Q+optO/5Z07WEhuaePu0D7tO7jvSbG2GD6GmN96kz83WgnJppByiUp60lFUN%0AKwUUUUDuFFFFA0wooooK3CiiigVgpp+/TqKCk7CH7tMqSmH71BUWJRRUg6CgbdiOnjpSN2pw6CgT%0AY003J9akpp+/QEdrCZPqaB96lbtSfw0DTFbtTaKUdRQCEyfWinn7tA6CgXMMop47/Wm4OaB3HjoK%0Ab/GaB1p1BOwUUUUE8wp4NJTmHShQOeKV9Dm5htFSYHpTG60J3C9xO9FFFMoKO4oo7igGFFFFADW7%0AUL3p1FABQehopO9A1uLRSZHrSHoaDSeoDoKdRTT3oFKI6jA9KMUd6CkraBRRRQUHeiiigh7hRRRQ%0AIKKKKACiijtmgAqRvumkH3aWobARQDjNKTjGfSijrRcBmcsKkI4FJSng8UNiauGD6GjB9DSZPrS7%0AjSFyiUfwn6U48gGmk445oQktQXlOtDf6ujPA60ZPrTB7kdO/gFPPb6UdjTbKuNH3aCDnrTs0ZpXF%0AzEZ4NJUlNYfN+FUmNO42iinj7tDYxlFSUUuYCOipKD1o5ioq7I6Kkoo5ipKyI6KkpcE0cw0iKipC%0ACD91j+FJ3wQQfejmGkMph+9U9Qv/AKw007kw3G0oPIpKf/BTLbEbtTh0FFNP3vxoJWo6mH71Pph+%0A9QOIfxCnH7tMozQNocvWkP3qVelL3oF1AdKWiigkKKKKACiiigAooooFccvehu1C96bS6nIFHesf%0AWfEvhzw1aQ3HiPX9F0CCaTy4ZNRvY7dZG/uqXIyfYVLrHiDQvD3hO517XdY03SNEto/Mnv7u4WOC%0ANf7xcnAHNPXsUkadFZWg+ItB8UeHotW8N61pWv6ZKMx3Wn3STxN/wJSRVyPUbGXW59NS8tH1CGNZ%0AJbZZgZERjhWK9QDg8+1LXsUWaKeSACTwBWNofiHQ/E2lT32gapZavaQ3MltLLbSbgksZ2uh9GB4I%0AoTdrjszWoptxKLfT55yrOIo2cqvU4GcD3r478MfFX9o/4maTP4j+HnhT4Rp4PlvZ7eyuNY1C7F0P%0AKcowljQYVgR0BqoxclcajqfY1FcR4SuvG1r8N3vPii/hOx1iHfJPJoryC0jiAzuJlOeBnOa+dtR/%0Aap1K+ttZ134cfBvxj8Qfh/pBc6h4njuorOCVIz+8a2ST5pwuCcgAHHFUoNvQrkPsCkPSvOJ/i58O%0AtN+Dmh+O/EHivSPDHh7VrRLm0m1a4WAsrqG2gMclh3ArzLTv2ufgLr/jO00Hwp4uvvGOoT3KwD+w%0A9GurmONicfO4TaoHck8UuWXYORH0oQMHig9KwLfxP4euviDqPhS31W3k8RWFol3eWWcPDE/3Hb0B%0Arz5f2gPgg/xO/wCENHxT8GN4mEvk/YRqK7vM6bN33d3tnNKz7FuKZ7A3SlrlvEPjTwh4U1DSLXxL%0A4n0TQrjVbgW+mR3t2sTXkh6JGCfmY56CuoAGOTxnrSt1KdhaK+UPgL8Q/ir4g/as/aC8B/E3+yyn%0AhzV7eXQEswP3VlOhaNWP8RwMknua+rj3+lVKNnYjm0uFL3ooqRtXQUUYooI5AooooC1go4HJ6DrR%0ATXz5T467TQNHyfoP7SPjPxz4XGtfDn4C+KPFOizXd3a2uoy61bWsEj29xJbsTuywBaMnp0Naya/+%0A1trGGtfAHwj8IQuuVXU9auL2VT7iNVH5GqP7E8bW/wCwHotq+fMg8Ra5G31Gq3Qr6uc4YetVJpSs%0AkNpHy6lh+2DJLmXxH8DLFT/Cmk3cmP8AyKKuy6B+1hNANvxG+Dlq/fZ4WuW/nPX0j/FnvRSv5Cuf%0ALtt4I/auubkjUfjh4MsYs8fYvBkbf+huavTfDz9piGIy2X7QWh3NyOkV74Kt/KPsdrA/ka+lQTuH%0ANOLduaXMwufM1v8A8NdWO+C4b4Ga6q8R3XlXlsWHqUDED86Y4/bAubg7bj4GaXF2xb3k5/VxX03j%0A5c4pcZAo5vJCufMw8K/tU6pcIb74q/Drw9GD8y6X4VMpI9jLI38qbP4B/abjmb7F8edBlUDpceDY%0AP6MK+nBkHNGMk84yKFUt0Hc8G/Z08deLPHfwK1C/8bX+m6l4g07xBeaZPcWVr9nSQQPtB2ZOCa97%0APJr5P/ZTgls/B3xY0+bI+z/EXUQo9NzBv619XEn3p1oqM2kTfqKe1Jg0cnnmmsTu/Cs0rk7jiece%0A1NOQOtNoqrFjt1KORTOpqQDApMloKRgO9LSnt9KkInxzfeKf2h/En7cvxR8B+CfEXgLw/wCGvDth%0Ap13ZLq+kPdSzC5iYkEq6kAMjV0n2P9sXJUa58DCOgY6beZPvjfVTw6i2H/BYv4lRNc4bVfh1pl2s%0AOfveVcTRE/hn9a+rcn1NdFSVraIaPmaHRf2tXjzc+Ovg3bP3EXh25cfrMKlOiftWAcfEP4SE+/hi%0Acf8AtevpDJznNLkkDml7T+6vuB3PmJ9M/a7jmKxeK/grcoB96XQ7lN35SmkFr+2Ayg/2p8DBkf8A%0APhd8f+P19On5jyaSn7S6+FfcEWz5kOgftaXlswuPiJ8JNHc4x9i8NTTEc/7cuKWT4b/tGXlmouv2%0AibeykP3vsPg+2QD6Ekmvpqikp26ItanzLb/Bb4wy5/tP9pzxzJkdLPSLKH/2maYP2ePFDSbr39o3%0A423PPKx6jDEP/HYxX07RT9rIbsfMh/Zk0i7ujLrPxW+N2rt6P4umiH/kPbXEfEb9l74e6F8E/F3i%0Aqw8QfE2PxBpmkz3Vnfy+L7x5I5EQsp5fB5A7V9pV4/8AtAzPB+xD8VZUcoy+GLsgjt+6aqjVm5LU%0Am6safwS1bUdc/Y9+GWsavdTX+p3nhy0mubiVsvK5iXLMe5PWvTj96vMPgnHFD+xv8Ko4ceWPClhj%0AHvboTXp5+9WMviY76CUUUUBYKKKKAY0feNOophJ3daC9x9FNJ4FJk+poBIfRTMn1NPHSgGrBRRRQ%0AIKKKKACg9DRRQBHRTm6UUFp3Hk5pCQsbOeQoJNFPIBUgjIIwRSvY4Y7n5+fC74SeFv2n/A3jr4u/%0AFyC58Rz+I9U1DSvDllLMRHoOnQTPboLdeiStsLs+M5NdD8dNBtPHPxu+F37L2q65N4W+F2p+Hnu7%0A8rIEuNb+ytHHFYRyt0OPnbHzEDitHRvBv7QPwL17xP4Y+EnhbwT8Qfhpq+sT6poqavrTafceH5Lh%0AzJNC42MJoRIWZdpDDJFfRXjP4aeFPir8MrDRfiT4f0/U5Y0SXdA7K1ncbRue3lBDoQc4YEHFbt2d%0A29DVnyT8Tvhh4X/ZR8PeFvi38HYrzwxY6ZqllpviTQYrl3tdZsppVhJdCSPPUsGDgZODXoul3k8H%0A/BanX7SCSRbLUvhbb3DxnozR3bBT9fnNaum/speCbbxTo974g8ZfFDx7pekXS3OlaJ4l8RyXdjay%0Aqco3lkDeV7bycVv/ABM/Z48N/E34r2fjWTxf8RPBPiKHSm0yW68K60bFrm2Mgk8uQ7SSAw7YqlKO%0AzfQIvXY+hQD/ABDivkn9l4wWXjL9onw9bLIsOn/Em5kUMeB50UbkD2zn869Q+GHwW0P4W6pqF5pn%0Air4ieJLi8iEch8SeI59QVcHOVWQ7VPuBXk0/7KeqJ8Z/G/irw18efit4JsfFGrHU7/SdDmt4IxMU%0ACZDmMuRhehNQuVJq+5SR9V61eJp3gjWL+T7ltZSzN9FQn+lfnl+zp4C+L5/ZT0zxBoX7QVl4J0Xx%0ADd3upw6TN4ftLoWyy3EhykkjA9OeelfavgL4d3fg/wCHmp+Hdf8AHPi/4lx3rt5l14muEmmWNl2m%0AIFVX5cZrxpf2JP2Z1Y7/AIcRXMYZjHDNql08cYJJKqhkwBk9AKISirq447mV8W5PsP8AwSu8e6do%0AnxCl+I19Z2Jh1XW4r2OeZwZB527yiQmFLfKOgFfR3w+tvDg/Z88J23hlbGfwudFgW0EG1oXiMY/A%0A55zWP4A+Dnwx+F3w+1Lwt4E8GaN4e0DUJGkvrOCLMdwzDBLhs7sjjmvIL/8AY8+FUlxdLoOrfErw%0ATpd07Nc6R4d8WXVpYvu+8BCGIQHuFxTbi1a47vse/al4J8E+IJ9HudW8M+HdX/soEac09pHIlrnr%0A5YIwv4V87fsn29teaV8YvEVtZafbWepfEG++yLbwqihIyI+AB6ivonwp4M0PwN8JbHwZ4Xim0/R7%0AG2MFoJJmmkQHPzFmJLHJzya5v4N/DO2+EXwZj8I2+rXGun7fcXs17PEI2keaQyNkAkcZxS57RauE%0AXc+APixqPie5H7Wvi3w7rOraGjeJNK8OX+qWvyy2VioVbh42HTAc5PYV7b8TdC/Z/wDhv/wTmPg2%0AK08Ma9Ne6OLTw3DbiObUtUvXX91LGy5dpN5Dlx09a+ifA/we8O+DNK+IVjLPdeJbLxhrc+qanBqo%0AWVMzDDRAY5QDoDWd4L/Zz+B/w88at4i8IfDjw9o+tkkpdrG0jw56iPeW2D2XFU5x27CSZ8bftB/D%0A+Xxn8AP2Sfg/49vZrbxpq2rRRy6qsmLqzlgtS+5W65D7M+u2vpv4A/FmXU/D2ofDP4l6jaaX8WPB%0A8hsdWgu5hE+oQpxFex7sb0kQA5GcHNaPxI+B0/xC/bZ+DfxQutdit9F8DJdyjSvJJe5uJV2q4fOA%0AFGeMV2PxI+Bvwk+Lk1pP8QfAujeIry2G2C7lVo50X+6JIyr7fbOKTcWkmPU8X/Z8urTxb+2R+0r8%0ASNHuBfeGr7XLTSdPvE5iuWs4AkrI3RlDllyPSvr49/pWB4W8KeG/BPgaw8NeE9GsdA0Gyj8u1srS%0APZHGPYevqeproKzm03oPdBR3oo4FSDWoUUZHrRQLUKKKoW2raXd+INQ0q11GxuNTsAhvrSOdWmth%0AIMxl1ByoYAkZHOKCWX6cv3xTacn+tX60MqO58o/saXLzfsueJ7V/+XH4j+I7dR6D+0pn/wDZ6+rp%0AmVFZ3ZURVyzMcAD1Jr5L/Y2x/wAKH+JGOn/C1/Ef/paa2f2oPh/8SPiB4D8L2nghYta0Gy1Mz+KP%0ACp1h9MfX7XbhbcXKAlAG5KnAboTVNXqMfQ9Y8O/Fn4ZeL/iLqfhHwr448O+IfEmnxmS8sbC7EzRK%0ADg5K/KcE4ODxXoQBJ6E185fA3xt8Pbq/ufh1pfw3uPg3420SyElx4WvtPihk+zk7fOhlTK3EW7AL%0Aqc56ivCv2qvBfxE0f4b6hq9n8e/iomt+JdettJ8NaBo88NhbQyXEyoqZjTe4RSSSWycU+Rc1ibH3%0A9PLFa2klzcyR29vEpeSWVgqoo6kk8Ae9R213a3+nQXtjc295ZzIHhngkDxyKejKw4I9xXw58ctI0%0An4T/ALF2lfBDw74j1Z/EHxD1BdFXUte1l7mZBKALu6aWZiQqRqzYyAOKwPhB8bPDvwI+FvxE+EXi%0AfxZY+M7f4b6P/aHhnUrG8ink1PSsAJGxQkebG52NnsQe1HJpdBY/Q1QdorJ17XdI8MeEL/Xtevot%0AN0iyhMt1cyAlY0HUnGTXyDpnw4+JXxm+Hy+OvjR8TNY8G+HbyyN7p3hfwVqv2K2sIWXfG9zdKd80%0AgUgnDBB0Ga+Rfh/8evGnxBh+Engyx1qXx54m8P8AxL1HT0a6vTarrNlBC5tWncgiRSAQWwc4pKmn%0A1HY/Q/wj+0v8NPHPxJsfDXheLxxqL3jFbfUz4WvItPYj/pu6BQPfpX0EvL9a+dfAOh/tE3fxFsdf%0A+JPir4eaL4biicN4T8MaVJJuYj5fMupWzlf9lQDX0KCQpwD+eKmoo9Cr2PmD9mt92q/HRG5VfiPe%0Abcf7qV9RZ6V8pfspma78DfFTVJmyt78Q9SeI+oV1X+lfQvjLxl4V+Hvw31Lxd4112x8N+G9Pj8y8%0Av7x9scS+/r9BWmI1quxK1R1GT6mmN96srw/r+j+KvBOl+I/D2oQ6romo2y3Fldw52TRsMqwzzg1r%0AsefwrBXTI6jQcCgnIryfw38bfhd4w+P3in4X+HPFlnqfjrw5Gr6xpccbh7YE4BJKhTz6E16qPu1b%0Ag09UMcOtSdQMc1zXi7xNpfgr4Xa/4u1t5U0nSLCS8uzGAW2IpY4BIyeOK8U/Zt/ah+HP7UXw01nx%0AN8OYfEVvZ6Vf/Y72PVbLyGWTGRtIJVhj0NHI2uZCZ9IYPoaD/LrUbfepygkcCotoCVj5V1W3trL/%0AAILMeGLvftutS+Fl1Ey4+8Ir+Mj/ANDavqvvXyL4vBX/AILSfCPnlvhvqwI+l1Ca+sLtbyTw/epY%0AypBftA620ki5VJCp2kjuAcHFbVNVH0LUTyr4k/HL4Z/CiaC08XeIca3cIXtdE022e81CdQM7lgiB%0Afb/tEAe9dr4L8W6R49+FOheMtBF+uj6vaLc2gvbVreYI3TfG3Kn2NfBvwuvfE/7OI1nU/jP8C/F3%0AiHxNf3ck/iD4p+H3TWxeAudrvFkT28SqceWqkKB+NfcA1OH4kfs8f2p8MvGNrpsGt2HmaL4isrZL%0AlYQx/wBYsb4BYcja3Q9eRRKKX+YJHaTTwW1rJcXM8NtbxjLyyuEVR6kngVz1j4z8Hanop1LTvFnh%0Au+04XhszdQalE8XnjH7reGwX5Hy5zX57+O/2fNG1n9vj4H/DrxT46+IvxPluoNQ8ReMF17XJGt5r%0AK2RY4ovs8W2NI3uJEyAvOMZpnxp0D4JeM/2idH/Z21TVPCHww+DPgO0TX/Ff2a9h0vztRmUpY20T%0A8YZRmZmHPCg9atU49waP0xIwcUYPoa+B/hV+0ouhf8E8vitrWq61D8Stb+FGoTaUdVtbpXXWocqb%0AG4aQZHzJIiu3rGx71t6j4D+JFt8If+F0fFX9oPxHp+s6ZajW49I8P3Udj4fgVU81bVlClp0bhC5b%0ALZOByKlU9bNisfblcX45+Ingr4aeEV13xz4gs/D2lvL5UUs4ZjLJjIRVUFmb2ArgP2b/AI0W3x6/%0AZJ8O/EIWS6VrE4eDWdMAZTZXSHDJhucEFXXPVWFeAx/GDwZ4B/bv/aLfx1r4k8N2v9jJpWjvC93P%0ALqLQSs62sGGJcpszsHpRCndtPoW2fTXw9+M/gj4papfW3g//AISW5jtYRK91faBdWVu6k4Gx5kUM%0AfYdqv/GLTv7W/ZR+I2nEgef4du0yeg/dNXX+HtWj17wRpOtQ6dqGkRX1olwlnf2/k3EIZQQsifwu%0AM8jtR4is11D4f67YMu9bnT5omX1DIRRpzqwnqjzf9nu9i1D9hb4SXcDiSJ/C1mAw77YlU/qK9iP3%0Aq+b/ANke7af/AIJ8fD2B4zFJYQ3NiyZzgw3UqY/ICvpA8mpmrTZK2EoooqRpDD96nDpS1578QPih%0A4P8Ahfa6DeeNLy50rS9V1BbGPUfs5a2tpG+758g4iUngMeM00m3ZFt6HoVFRQTwXVnFc2s8NzbSq%0AHilicMjqehBHBFeEftP3XiWw/YJ+J2peEvEl54T12y0eS4g1G1QNLHtwSFz0JHGeooSu7CPfSpHY%0A4+lNP3a+CtI+BHi22/ZR0X4keD/jt8ZIPiGnh2PVIm1bxC17YXMohErRS27rtMbYK8YIzVrxl+0n%0A8VV/ZQ+BvjvwD4Y8HySeNb6303V77V5pGh0y5lJQERxkF1Lq3OeOKtU29hJn3RUg6CvnjwhZ/tVx%0A/ErTX8dar8EbvwhuP29NFsb2O8K442GRioOcda8h8XfHj4ha5+2h4i+DnhrxT4A+CaaU6Jaal4xs%0A2uLzXiyg7rONmSIx54yWLZ7UKk27Jocnc+5aK8g8d/Ed/g98CtA17xsJPE2oTalY6TczaZCsAmuL%0AmRYhKEZiFXJyQCeKj+PPxC8Q/Cv9mfV/H3hzS7DWZdKuLaW/trtmC/ZGmRJ2BXncqMWHbilyMIx6%0AnsdFeR/ED4sQeA7/AOF01xpEl/oHi7XItIl1FLgL9gknjLwOy4+dXIK8EYJFetzHyreWXbJJsUts%0ARcs2BnAHc1Gq3KsLRXy7P+1HY215NFN8Ef2ilWNiplXwS7o2O4xJkg/SsDwr+2LpPj/w+dV+HvwQ%0A+PfjDTPMliS8g8PRW8LSRuUdN0sy8qwIPoRWkqU1uhKzPsEjIorlfAfifU/GHw3tNd1jwfrvgS/m%0Adw+j6w0RuYQGIDN5bMvOMjmisHKzsyrHWL3p1FY/iHXdM8LeAda8Ta1cJaaRpVlLeXkzsAI441LM%0ATn2Bo3ZxRV2a6OpkKbl3AA4zyBSN2r4E+DPxY8A+E9M8SfG/44/Ebw94P8Z/EqaO+07QNR1MCbS9%0AHQFbCBYASwLIfMYheWc1926Tq2na74asNZ0e6jv9LvYFntbiPO2WNhlWGecEVco8rNJR0LmB6U5e%0A9ZWua/oXhjw9Nq/iTWtJ0DSoRmW81G7S3hT6s5AFZ3hTxt4P8deHn1bwZ4o0DxXpivse60m+juY1%0Ab+6ShOD7Gk7tXsJRsjqKKK4vxz8RfAvwz8JDXvH/AIs0PwjpBfy1udTuliV367VzyzewBNSk27IE%0AdpRXyFN+3B8CJxct4Yn+IHj+C2kKXFx4X8F397DEQMkNIIgo45619EeBviF4T+I3hBNa8KapHf2+%0A1TPA6mO4tWYbgk0TfNG+P4WGap05JXaKUV3O1wPSjA9K85+IXxR8LfDGPwu/ih79E1/WotI082ts%0AZc3EudgbHQe9eLXP7R/jbVPH2s6B8P8A9nD4m+LpNKvTaX11eahYaXDG46H97MXwRyCVGRQqcmrh%0Ayn1Y3X8KaOprz6fx4/h79ne++IHxG0KfwSmm6fJeatp4ukvXtUQZIDx4Vz9K8N0P9rnw14w0/Sb3%0AwP8ACb49+KtPv2Tyr2DwZJBbKrdHMsrKpXvkE8VcacnsVFan1pSYzXkHxH+N/gH4UW2ljxhL4hXU%0AdRhMlnpml6Hc6hdSgfeGyBGxjpyQPevEvDn7bnw68TK+r2fgX4uad8P4JJI77xpqnh37NpdmycMJ%0AGZ94OflwFJzxT5Jdi20j6a+IHjS0+Hvwq1HxbfaL4j16ysdrXFtolibq5CE/M4jByyqOTjJwOlO8%0AC+PvBvxK+Hlp4q8D69YeIdEuB8s1s+TGw6pIp5Rx0KsARWb8N/id4c+KngufxB4WtvEcOkpcGGOX%0AV9HmsDcYGd8ayqGaMg8NjBr538XaHZ/BP/goJ8PfGng+AaT4e+JF9Lovi3Srcbbaa8EZkt7wJ91Z%0ATtZWI+93qoxT06kPU+ysc0v1pB1NLWRVtLHzlr/xZ+NGneM9SsNE/Zn8TeIdLguGjttSHivT7dbp%0AAcCQIxLKD1APNZlx8Yfj7a2JuX/ZP8SToACY7fxvpry/guRk/jX1BRVuUewleJ8pw/Hj403t1Fb2%0AH7I/xLSZvvtqHiDTbaJP+B+Y2fyq3c/GT492ZHnfsn+KJwec2njTTZcfXkV9Q0UXj2L5j5T/AOF5%0AfHQnA/ZI8eD6+KdN/wDi6+bvjVc/tDW3jiD4/wDgz4C2fwx8Y+G7MSa1q+p+P7P7Jq2lRKzSWt/C%0AuFcBclHzuRunpX6e18x/F34ceMPjN+0T4W8DeILf7J+z5ploms6+I518zxHfpNiDTpFzuFsm0SuM%0AYc7Vq4TXaxDken/Bjx/f/Ff9ljwL8SNS8LXfgy78RaVHfNo11L5klsr52gtgZBXDDgcMK9PX/WCo%0Ao40igSKJI4okULGiLtVVAwAAOgFSr98Vix8yPlL9jeMr+zR4wmJyZ/iX4kkz6/8AEylX/wBlr2H4%0Ao/Eu4+Gnh/S7+D4e/ET4gm8uTCbfwlpYvJbf5Sd8ill2rxjPrXk/7IS4/ZL1aZWys/j7xHIp9v7W%0AuR/SvqRutVNJVHcXMfKPw90L4jfEj9rWz+OHjzwjJ8NdJ0bRLjSvC/h66mSbUZVuGRpLi88s7V4Q%0ABYgSRkkkV0PxE8H+I/Gv7d/wYebSLqXwB4Xt7zW7m9JUQvqO0RW8RG7O4Bnbkdq+i805SQe+KTlr%0AcLnzJ42/Z+0/4p/tq2vjD4maV4c8W/D3RvDf2TQdHvC0hS9klzNO6Y2/cAUHJ71y3xD/AGTPA1z4%0Ay8DeJPhL4M8CeEPEGm6vHFrDLaiKC/0pxtubWWNARKGTOFI685r7HJJqM/KM8/hSU2K58sH9iv8A%0AZ+GvrOPDniJNMByNDTxPfDTCOu02/m7NvbaeMdq+XvjP8C9c0v8A4K5/B3W/g9qfhnwHrMvh2dtJ%0At7+weTTJJrNT+6kjjIIBjZhlTmvp3xJ+08nw1/aL1zwp8Y/A2veAPAyRo/h/xykcl/p+ok/eWUwx%0AH7Ow9HP41wZ+JPhT4+f8FBPgzqPwmv7rxX4e8HJf3uv6/b2cqWEIlhMaQiV1UPISfujOB1quWa3N%0AFY97+EfgD4jeG/EHinxZ8U/Hdp4s8V660StZaTbPb6Xp0cYIVII3ZmycklicmvZb2UQ6NeT7gvlQ%0AO+T2wpqcqWAIxjHFcr45vU0n4IeMdSnYJFbaLdSEk46RNUrVq5Ddzwn9j6CYfsZW97PtaTUPEGpX%0AZZTkNvuX5/SvfPGngrwt8QfhxqPhHxnotn4i8OX6hLvT7pcxygHIBxz1HrXkX7KtjHp3/BPz4YpG%0ApHn6WbhvcySO+f1r6DHSqqt+0bRF2ijpemafonhuw0fSbKDTtLs4FgtLaBdscMajCqo7ACr7DjHS%0Anc8YzSYPoayuU3c4nR/ht4C0D4oa/wCN9F8J6Jpvi/XFUavq9vbBbm8C/dDv1OK7AdSPSpufemHg%0A9Krmb3EUdQ0+w1fQrvS9Us7bUdNuojFc2txGHjmQ9VZTwQfSsXwj4I8IeAvCqaD4K8M6L4V0YSGQ%0AWWmWiwRbiclsKOp9a6oH5fSlP3c980cz2FfUjYYalDEYwab35qRei0PYJM+UtbS3vv8Ags14JxLu%0AudO+F187pjoJL6IDn/gJr6qD4cDtXyfoDRar/wAFpPiHP5LmTQvhtp1mJOw8+5mmI/QV9X1pUWy8%0AjSDSWp83+LfH/wAfdU+IWveEPhx8FYdMhgmMEHjTxbrMKabIhGPOjt4i00vsp2++M16F8F/hp/wq%0AX9njRvBUusHXb23lnur2+EIhSW4uJnnlMcY4SPfIQq9hXp+T6mkqG9LC5j538M+B/Ekn/BT34pfE%0AvXtJeHQIvCOl6F4VvHlVhOheS4vCqg5XEhjU5AztGK4D4DfAzSb/AEzxr4/+Mfw00a4+JGv+ONUv%0A2l1uyiupobUTeXaqhbcFTyY0wB2NfY9LVc7FzHxjpHgy20H/AIKrfEDwra+CZpfhj48+HcE+sqNL%0A2aXHeWsxhWPIGwmSKVsr1+XNdnp37IPwH07xHa3f/CM6vqVjayiWz0bUtfu7rTLYg5XZbSSGPA4w%0ACCB6V9NZJ4qKKaCYyLDNHMY3KSeWwbYwxlTjoeehpubKTufJfgy2j+G//BVfx34QtVW18OfEHw1F%0A4jsraNNscd9aOLe42gDA3RNGxH+xXjGjfEfwX8Ev2jf2j0+Jyvofj7VvFH9p+D7y78N3F/8AbLdr%0ASNITA0UZLYYMGQMDXtfxnuItI/4KQ/so6oqt9qvb/WNLdg+AYpLItgjHPzIPyr6zZEZkLpG7J90s%0AoJH0rRysl5geR/Avxp448f8A7M3h/wAVfETwo3g7xPeGTzbExPFvjViI5vLf54/MXDbG5Ga9ccb7%0AeRRyWQgflTySevNC4Dj0zWLfUE7s+Xf2RZblf2WtdsLo/vdP8caza4/ugXTPj/x+vW/iRqHxX07w%0AvZSfCbw54P8AEurNP/pUPiLVJLOKOPHVTGjEtnsa8b/ZdBsr34+aG0u9rL4n3zhAeEEscUg/ma+q%0AquppNjT0PlJdX/bW1JXgHgz9nzww38N3ca7fXo/79pEv86SXwl+2bdXKXJ+MXwU0rj5rO28Fzyx5%0A/wB9591fV1FRzeSBux8sy+Gv2ynh8uP4pfA5GI/1qeD7olffBuMV538TtG/aF0b4EeI9Q+LXxz+D%0ANl4DtrJ/7SYfD1rn7UCMCNopZiCWPACjJJFfdBznvWLrvh/QvE+gHSvEekafrmmmVJfst7CJI96N%0AuRsHjIIyKqM7PVfgO10fI37Cnhv4oeGf2Pbi1+IEsv8AYlxq0tz4QtrqAwXVvp78oskW5vLUnlUy%0ASoNeqftT3cVl/wAE7fi9NMcBvD0yIvd2bCqo9yTgV9AKAIwoAAAwAK8V+Pvw01r4ufs9TeCNE1q0%0A0OS61S0mu7i4RmVreKZZJEAH8TBcDtRFpzuwitD4Z8KfGb44fEGPwJ8Bb/wrc/szaRqvh2G1tPEX%0AiS2+1X2txiELJHZbcwxyFeQHbcAcgV6h8d/h29r8Ov2e/wBmH4X6tL4e1STXI9Qg1Wa2W5ksbaxU%0AyPcupwGYuw4PUmvoz48fCm8+J37M/wDwjXhu7stN8YaXPbXnhrVZ8oLK6gZdr5UEgFQQQOua5T4j%0A/ATxf46+LvgT4geH/i9qvw28XaLoL6TqFxp2kQXn2mOXa0pj87iNywOG2n6VqpLuHIdZ8PPhj8Vf%0ADnxBTXfHnx78R/ES3it3ii0g6HaafaZbHzsIl3Mwxxlu9eh+Ovh34F+JPg2fRPHfhjR/Eulup+W9%0AgVmh/wBpH+8jDqCCCK88+GvwJ0f4ffEG88YXnjj4k+P/ABheWotbjVPE+uNcAR5ztjgULFGM/wB1%0Ac1zfiv4F+OviR8QdY/4WD8bPEp+G80x+yeD/AAtarpSvD/zzubpS0soPfaUBrJ73uDVkfHuoatcN%0A+yr4h8N3HiDUPFfw08F/HDSrDQ9evpjM32FJ1LI0x++kUjeXvJPQZNfb/wC0/qejaf8A8E9fixNq%0AskT2d14antbZA2TPNMuyFEx1ZnZcYr0GH4Y/D+3+A7fDCHwno6eAXsjZvoogHkNERyCOpOed2d2e%0Ac5rxTRf2TfBWl+LfD8+o+NPih4t8K6Bdi70Lwlr+vfatLsZl/wBW4QoHfZ/AHdgvFW5pu7BOyOK+%0AMcFy3we/ZH8CXokh1jUfG+itPvH3Psls80gPvlQK+3ZCqx7jhFAySTgCvOPib8KPAnxe8D2+geOd%0AHk1C0tbkXVjPbXUlrc2UwBAlhljZWRsEjIPevEbn9jT4W6hZJZaz4q+Nuu6UBtbT9Q+IuoyW8i/3%0AGXzBlccYqNJJXBs7f9pTx7qfgP8AZB16+8Mtv8Ya5JDoXhjY2S19euIImX1KBmk4/uV33wq+H2mf%0ACz9njwj4B0pQbfR9OjgklPLTzY3Syse7O5ZifU14r8ffAeop4U+AM3gnQL3VdN8E/EPS7mbSLRTI%0ARZBJLcvyckRCRWyc9Ca+qG++aUn7qSBOzJV60UwfdorBx1HzADmvlT9tC8Zf2FNS0ETNbx+Jde0v%0AQ53H/PG5vYY5R9ChYfjX1ZXj3x7+G138Vv2WPEvhLSrtLDxCVjvdDun6QX1vIs1ux9t6AH2JrSDS%0AkjjhufEtv4K8ba1/wV0+M+u+FNc+EngXQfB3h7RNCa71bw8byR7YoZwMvIiJKAAu/nACgd6/QfUP%0AH3gzw/8ADS28Uar4n0VPDrSx26alBKJLeSV3Eaqpj3A5YgcZ5r5a8Kfs0fDL4wXX/C3/AIwfDTxP%0Ap/j7XYoR4l8L63qsp0/7XboIPNFsj+W6kJlWOcqQcc19Z+H/AAh4V8K+BbLwv4b8OaLonhy0x9l0%0A2zs0jt4uc/KgGAc81rJxejNW9LnwF4rhtrb9tHxv4i/aH+Enxb+Kdvb6io+Hlto/h99Y0CCy2Aqw%0AhjbaLktnc0q5HGOK7D4E/F7RH+O/x/1DWPhPpXwA8KeHtO0+9u47yxW21CeN0kIuLpIiUQbVOFA3%0AAda+9QSTXyDoEcNj/wAFg/itoGorb3Vl4n+H2n3y2ssW9JfImkhcMDwRhxx71VOale4lLQ+r9O1C%0Ay1bQbLVdNuYb3TryBJ7W4iOUljcblYH0IINQ6lo2j6wtuusaVpmqxwSeZEt5apMI2/vDcDg+9XLe%0ACC1so7e2hjt7eNQkcUahVRQMAADgAelTEAqQeQetc7dnoC3Pkf8AZKi3aL8btXhMf2a++JeoeQqD%0ACqsWyPAHYfLXyz8WfiL4y8D/ALRn7THhX4XXDW3xK8Valotp4XhgUB2upIz5jjjjCKcmv0s8EeAP%0AC3w78O6jpXhPT20+xvtTn1K5jaZpN9xM26RssTjJ7dBXk0X7NXg5f+ChN5+0Rcahqd74il0xLS30%0AubBtLaRQV+0IOvmFTj2rodWPO2XHQ+XPif8AFbS/i5+xL8KHDxRfE2w+IelWGqaLNIFvLTUIZgsw%0AKZzyAWB6EGrXg/wX8SfGH7d/7TdpZfGnUPhV4ci161e8t9H0+A31wptxtcXEwbyk68hfxr7QuPgj%0A8JLn4/2/xTm+H/hxviDCPk1sW+Js9NxwdrPjjcQT71y/j/8AZm+CvxO+JzeMPGXhB9Q12SBYLqW3%0A1S5tUu41+6syRSKsoH+0DSjOJdzxL40eM/Dlp/wS08ZaB4E+JX/CwbuS4Tww2u6jfJfzG5nlEbCV%0AgApYZPGAKxfAnhk+D9f8F+B/E37bcUx0pra0tfB2jwaZp7TOigi3YjfK6nuAQSK+qNQ+Bnwi1P4B%0AyfC24+H/AIdh+H7srnRrS3+zw71OVfKYbfn+LOfesXwZ+zN+z/8AD3xTb674O+EfgjRddgGItSTT%0A1kuVPqJHy273zmqVSK7/AIBc2Pjr4tbwL+xt8S/FsMnkXOneH7iSGYdUcoVU/gWzXnPwi+Hnw68f%0A/wDBL/wX4LuFt/EPg/WNCiku57WRojNM37xpVcYYOJOQ3qK+gvE3hnQfGfgDV/CvifTYNY0DU7dr%0Ae/sps7Jo26qcc1zWseAIR+zNqHw28B6gfh5b/wBkNp+kXmnw7jpo27VZFJGcfX8azTXLbrclXSPn%0AHR5PH/wQ/a/+G3wtj+JmqfFPwV4ohuRFpfiGBJNV0SKBAVlFygBlh/g/eDOe9bH7WKytL8AFtg5u%0Av+Fo2BQIMnbsk3fhiu2+Cf7P2m/CaW413W/FGufEv4kXtsltf+K9bYNO0Kj5YYl5EUY9AeepJrzi%0Awurz4+f8FAbHXLFJP+FU/Cu5mht7hlIXVtaZdjsgI5SFcjPdia2g1zJroSux9kgcmloPXnr3ormN%0AAooooFfUKKKKCWFFFFAgprnbC7dMKTTqyteuTZ+CNYuwcGGylkz6YQmnFXYJXZ8z/sUpN/w7x8N3%0Ac+fMvdd1m657+Zql0a+r2+9XzD+xksv/AA65+Ds0+fNudKkuW9/NuZpM/wDj9fTvpTqO9RlNWQlK%0AOtJSjqKliTscprfjjw54e+I/hPwpql3LFrXiSWWPSoEhLCQxRmR8kcKAo711px0xmvlL4mXLy/8A%0ABUn9nHThgomn63csPTFttz+tfVjdaqcElHzENdEkgKSKroRgqwyD+FJBDDBEVghihT+7GgUfpS04%0ANhcVHSwOQFiTXjP7ROpTaX+w58ULuF1jmHh+dEYnoWXb/WvZwcmvm79rtZH/AOCenxEji/1kltEi%0AjOMlpkGP1qqa99Ex3PT/AITaWdG/Zb+HWl8Zt/DtopwMDPkqT/OvQQe1YnhiFrb4X+G7V12NFpdu%0AhX0xEoxW0eDSk7thKV2Sc+9HPvUVFTyhykvPvTG+9+FNoppWGlYcDgUoOaZRQ0Jol7UYDKQwyDwa%0AiqVRuGP61LVgWuh8p/CIXWpf8FIP2n9ZldZLO1m0fS7cj+Ex2ZkZfwMlfU9fKH7LITVb748+OUiU%0AL4g+J+oiKQf8tIbbbbIfzjavrA/eret8dik9BKKM0VmC1YUV8e/GP9ozVPhD/wAFEPg14G1ybR7L%0A4W+KdJvZdXv2hZ7izuEZIrdnbhY4WkkjUse55wK7X9pXxlr/AIV8F/C2Hwzqc2m3XiD4m6JpM1xA%0Awy1vLOGlT6MqEH2NaRptyS7jasj6PQjJ618y+Jf2eNQj+KOu+NvhP8WfHHwo1/Wbr7Vq1pbCLUNK%0AvJioUyvaTghXIAyUZc4r6XOfOb6ntS1MJuLuhNI+afCXwH8UD48eH/iN8Xfinf8AxQ17w7HMvhy0%0ATRYdNsbB5V2STeXGWLylSQGLcZ6V9LUUUSm5O7HfQKUffH1pKUYDZOMD1qQSPkn9msEfHv8Aak4+%0AT/hYS4+v2WPP9K+ta+WP2Wle+0742eJ3jSP+1/iZqBTa2crCI4Qf/HTX1PWtb+IxIKKKKyG3cKYf%0AvUHO6koNYxsSDoKKZg+howfQ0BYdjmkH3jSYPoaSgLEmB6UUdqQ/dNBPUWio8Gng8d6BtC0UUUEt%0AhRRRQMePu0UD7tFQxp2FooopHEFFB6Gmr3p20KUjyP4qL8breLR9V+DkvgXUJLVnOp6H4kWWIX6n%0AG0RXEefKYc9VIOe1eS/DXwj8ZPEv7bM3xj+K/hLwz8PobDws+g6dpGmayNRluTJMsrzPIqqFUFQF%0AXrzX1x2qM8HGa0jUaVilOw8dKWou9LUcoElNYjjmm0U0i1OyCik4B9KOrevFMvm0uLketFGB6UnR%0Aj2oEpXYtFFFBYfzqtaWVnYW5hsLS1soS7OY4IlRSzHJbAHUnnNWaKACiiigAooooFbUKKKKCXuFF%0AFFAgrzr4v6odD/ZQ+JetCQRNY+F7+4VycYKW0jD+Vei185fte38enf8ABMf42TSFh5vhie2XBx80%0A2Il/VxVQ+JFQV2dN+zjpTaH/AME+/gtpToI3g8GabvUHPzNbRsf1Y17R6Vz/AIT06LSfhH4W0uAb%0AYbPSbW3jGMfKkKKP5V0QGQOuamT95sc9EMpR1FP2n3pMfWlzGaZ5RrHw1fVP2wvBXxR/tGJI9C0S%0A+077C0RLSG4KHeGzgY2Y6c5r1ZutPwfQ0xvvU+dytfoMbRRUg6c0m7CY0KSK+Y/2wXKfsLeINrFS%0A1/ZKQB97NynFfTuBmvlD9sOSE/sx6Fp0yymLUPGWlWzlemDcKTn8qqnrJFQVmfUenEf8I7p3r9lj%0A/wDQRVo9aYqCJEiUYVECqPQCnelT5icFe4ZooopisFGaKKBsXJ9TSUUUEtBWL4p1hfD/AMK/Emut%0A003S7i7POP8AVxM/9K2q8g/aCedP2GPi+1tu88eENQ2bRk5+zvTjHmkkXCyOR/ZH0iTSv+CfHw6e%0A5MhvdTsn1a5L/eaS6lecknv/AKwc19HE5Oa8m+A4jH7FXwo8pleP/hE7DBU8f8e6V6xVVPjYuSwU%0Ao5YA9M0lFQNOx8SaJ4f8PfGT/gqV+0hZ+K9Pt9Z8P+GvBOl+DxZXURaNlvTLeXJGe+ViwR0KjnNe%0AW+KPh98dPD3jr4NfBaXQdX+Ivw/0D4l6VrXhzxoJg8un6ZbO/mWt/k7t0SsAkvO8AA81+kcVhY22%0AoXd3bWdrb3V2we6ljiCvMwGAXI5YgDAz0HFRvplg/iW31h7WNtTggeCK4P3ljcqWX6Eqv5VqqtmJ%0A6l0/60nsTxS0UVkNy0CiiigQVFcHFhOfSNj+hqWsDxXrVr4c+GPiHX76VIbTT9OmuJXY8AIhP9Kq%0APxId9D5y/Y1jP/DG9zds26W88YaxPJz3N5IvP/fIr6sr5t/ZI0abSf2C/BlxdRtFday1zrMiNn5f%0AtVw8y/8AjrLX0lVVfjYkFFFFZgFNP36dRQaJ2Ciik70BcWmn79OooGnYa3am+9KetOP3KBp6IUdB%0ARTV60h+9QK2o+igdKTIoItcWiiigocveihe9FQ9wHUhOKWikcYgOaWiigAph+9St2ptUkWlYKKKK%0AoYUUUUAHHeiijvQVy6XCiiigkTvS0Ud6DSMugUUUUGgUUUUAFFFFABRRRQDCiiigloK+Uv20ZHl/%0AYUvtEjKZ17xNomkkN0In1O2Uj24zX1bXnXxR+FnhD4w/Cw+D/G1teXWif2hbX2y2uWgfzYJRKhDr%0AyPmUdKqDSkmxwOmvvFPhXSID/aHiLQtPjjyMTXsaBcdjk1zVz8XvhbZAtdfETwXCAM/Nq8I/9mrz%0Aqx/ZP/Z2sYv+SWaDqD7txk1GSW6dj6kyO1dVafs+/AuwQLZ/CH4eRAHPOiQt/NTVJUut/wABu5Hd%0AftF/AuyjeWf4r+BNi53bdWiYjHsDXLP+11+zsskoT4n6Fd7OotlklP8A46pr06z+FXwv0591j8OP%0AAdo3rFoNup/9ArqrPRNEsIitho2kWKkYIt7KOMH8hR+67ME7Hz9/w2H+zz/0Paf+C+4/+Ip6/tf/%0AALPLjP8AwnkQ+thOP/ZK+ivslr/z62v/AH4X/CnLaWu3/j0tD/2xX/Cj90ujE5XPmq4/bH/Z4t+W%0A8bSyj/plpdy/8kqlH+2l8ApnIt9d8SXIHUw+GL5x+Yir6k+yWn/Ppaf9+Vp4jSNdscccQ9EUCjmp%0APp+JB8yw/tj/ALPz3IivPF17o2RkSapo11aof+BSRgV4v+1B+0H8GPEX7OPh600L4i+E9TuZ/F2m%0AsDFqKFrZFnVmlZc5CgDk199zWdpd28kd3aWl0hGCs0KuCPcEVxGofCj4X6tcCXU/hz4Gv5Qc75tD%0At2Of++KcZU072KidPoGv6L4q8KWWveHdUs9a0e7j3W97ayB4pR0ypHUVsntVSxsbHTNKt7HTLG00%0A6wgQLDbWsSxxxqOyqoAA+lWycmsupUthKKKKDMKKKKACiiigGFYPipUf4X+JUlsjqUZ0m5DWgGTO%0APKb5Px6fjW9UVxBFdafcWs4YwzRNHIFYqdrAg4I5HB6imtxrQ+Yv2NZtX/4dzfDSz8RW82na3bWL%0AwyWFy3763RZnEasOo+QLwa+oq+aLv9k/4URyfafC7eM/AmqdTf6B4juYZHb+84ZmVz9RVf8A4Ux8%0AbtKWNPCv7SGtyW6ZCxeIfD9veEL2G9ChJ98VvJU5O6kF3sfT9BOBk18wt8Mv2nWXH/DQ3h9fdfBa%0Af/Hqqv8ACT9pqQ5/4aV0+I9wnguIj9Zan2S7gkfVJPT6UlfKh+EP7TJ/5uZs/wDwiYf/AI5U0fwd%0A/aJbH2v9qC5QfxC28GWo/LLmj2S7iZ9TYPoaOnXj68V8tXHwO+Lt9DHHfftR/EABfvGy0OygLc+u%0A00h/ZgttRLHxR8Z/jh4i3DDJ/wAJGLVDx6QotJQh1l+AJtH01NqGn27YnvrOE+kk6j+Zqv8A23o2%0AedX0wf8Ab0n+NfO6/sh/AdxEdR8N65rksY/1up+I724Y+53S1pn9lL9nsoB/wrew4/6frn/47VWp%0Ad2OzZ7yuq6W4ympWDj1Fwh/rXzL+19rulD9gT4hWEHirR9N1GaxHlQPdqJLtQ6loEAOSXGV4HetO%0AT9kX9n15mePwRc2hPUW2uXsYP4CXFb/hz9mP4EeGdbh1PT/h1pF1qULh4brVJJL6SNh0KmZmwR7U%0AJ04u6bE0z07wQ0D/AAb8Ivbac+kW7aJamOxYYNsvkpiM+69PwrqaUgA4AAAFRn71YN31Kirj6Kjq%0AQdBQVy2CiiigAooooAYfvU7+EUtFA7jT19Kb3pSeTSUFLYKKcBkZpvegdwowfSin0CbsC9KWkHU0%0ADv8AWglj170U2ipaEf/Z)
-
The stage in agregation pipeline can be single or series of stage to get a result
-
Here we reshaping tweet to the middle(based on what we want) and then performe sorting stage in 'sort'
-
Agregation operators:
-
$project: Reshaping all the data so that it can be presented nicely depend what we want, to the next stage or as result.
-
$match: filter documents.
-
$group, compact multiple documents(given parameters) with single documents that satisfied the operator. operator $group as follows:
-
$sum
-
$first
-
$last
-
$max
-
$min
-
$avg
-
$push. Deal with Array
-
$addtoSet. Deal with Array, Perform as a set to update a value in array,
-
$skip: skip documents by index
-
$limit: limit by number, the documents. 3, means only first three allowed.
-
$unwind: unwind the array of a documents, to a multiple documents with same data, but different by each value of array name. This is useful as in Twitter, we may want to group by the hashtag
-
This produce 4-stage pipeline for agregation
-
friends: who i follow
-
followers: who follow me
-
This is the function of who included the most user mentions.
-
This will produce unique hashtag as an array, but not containing the same value.
-
Multiple stage with same name operator.
-
This one counts the user that has the most unique user mentions(user that mentions many unique users, the most)
-
We can index our database for fasten our query
-
To do this we specify our leftmost queries hashtag-->username
-
Keep in mind that although read faster, write becomes slower because the database has to be updated.
-
Here is the indexex command from monggo shell
-
If we execute second line, it will have few seconds to execute, because the data have 7 millions set.
-
But when we set index(tg), the result for the query give immediate results
-
We can specift name type(e.g. location) but the value must follow [x,y] format
-
Then we can query based on the $near operator.