Decision Trees
Decision Trees
-
This is example for a dating problem
-
Given a type,atmosphere,crowded,or a date, determine whether we want the restaurant or not. (Binary classsification problem)
-
This is the decision tree.
-
First step, we want to do some representation. We want to build a model for our input and determine the output
-
Then we want to make an algorithm to build the model, our representation
-
So representation is in our case a decision trees. We ask questions related to our features, and by giving yes/no, we move one step deeper in our tree.
-
First asked hungry? Yes -> move to another node. Rainy? False, then move to the node which in turn, a leaf. The leaf said True, which means we do pick the restaurant.
-
In other case, if hungry? No -> move to another side of nodes, and asked type? then so on until we reach another leaf, that is the output.
-
By then we have build a decision trees, our representation
-
The decision tree in the left are in fact our testing set. And the one on the right is our candidate concept. By deciding the trees to only have specific trees(occupied,type,happiness) we build a decision tree just that.
-
Decision Trees could be inspired by 20 Questions
-
We don't know which ones we wish to sort our question in nodes, so lets take a look with the game.
-
By A in thinking of Michael Jackson, B try to provide some questions to A, and A said yes/no
-
Typically, we want to ask broader yes/no question to split broader space.
-
We don't want to ask "Michael?". If said yes, it will give us something, but if no, then there will be harder because we don't get anything useful.
-
By sorting the question, we want to take yes/no as informative and keep asking questions that narrowed it downs to the possible answer.
-
This is some kind of work for decision tree.
-
So what's the algorithm?
-
First, pick best atribute. Best by spliting the category roughly in half
-
Ask a Question
-
Based on the answer, yes/no, follow the path
-
Keep doing that until we got an answer
-
The difference from the game(20 Questions), is we don't guess. But rather list of all the possible answers.
-
this is ranked based on the order of best
-
Third is best
-
Second is the worst as it done nothing to split
-
First could be the worst also, only separate the groups but still doing nothing(example of overfitting). Nothing useful as to split
-
So the decision tree could be any (linear n) or ordo parity(2^n)
-
this left side could be easier, but the right one is not, a lot harder
-
This a two representation model, and in machine learning, it's a lot better to pick best representation for our model, or we can end up with right representation, that could be bigger exponentially as nodes increases.
-
1 node = 2 leave. 2 nodes = 4 leave, 3 nodes = 8 leaves, till it output roughly 2^n
-
output as it a boolean, work like a bit. if bit itself depends of number position(which in case 2^n). and bit itself is 2, then the result is as above.
-
Even n equals 6 will generate huge number of value.
-
Earlier until now we have discussed is an atrribute that always discrete.
-
But it might be the case if it continuous. If that's the case, we might want to range the attribute, (e.g. age). Then it does makes sense if we asking same attribute on the node, but with different kinds of range.
-
Want a perfect classification algorithm
-
Keep in mind, noise must be accountable (bad input, etc)
-
We wouldn't want the next instances we predict wrong output (high error rate)
-
This would be the case of overfitting. As we want to generalize our algorithm to handle all data, including the noise.
-
We could do take the algorithm to the cross-validation set. Take order of polynomial of each atribute or learning rate, choose the model (decision tree) with the lowest cross-validation error. And by doing this, to make it more efficient(don't just make whole tree), we expand breadth-first (rather than depth-first) and directly test in cv set.
-
Or could do some pruning, take the earlier solution, and prune the attribute that doesn't do good job splitting (pruning the nodes).
-
-
Decision trees with continous output(regression), then here's what we should do.
-
We could make a vote(largest same output, labeled that), average(in a way, same as vote).
-
Keep attention to variance, does it perform a good job at splitting.
![](%0AIFhZWiAH3gAFABwADgAvABBhY3NwQVBQTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9tYAAQAA%0AAADTLWFwcGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFk%0AZXNjAAABUAAAAGJkc2NtAAABtAAAAYBjcHJ0AAADNAAAACR3dHB0AAADWAAAABRyWFlaAAADbAAA%0AABRnWFlaAAADgAAAABRiWFlaAAADlAAAABRyVFJDAAADqAAACAxhYXJnAAALtAAAACB2Y2d0AAAL%0A1AAABhJuZGluAAAR6AAABj5jaGFkAAAYKAAAACxtbW9kAAAYVAAAAChiVFJDAAADqAAACAxnVFJD%0AAAADqAAACAxhYWJnAAALtAAAACBhYWdnAAALtAAAACBkZXNjAAAAAAAAAAhEaXNwbGF5AAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAbWx1YwAAAAAAAAAeAAAADHNrU0sAAAAIAAABeGNhRVMAAAAIAAAB%0AeGhlSUwAAAAIAAABeHB0QlIAAAAIAAABeGl0SVQAAAAIAAABeGh1SFUAAAAIAAABeHVrVUEAAAAI%0AAAABeGtvS1IAAAAIAAABeG5iTk8AAAAIAAABeGNzQ1oAAAAIAAABeHpoVFcAAAAIAAABeGRlREUA%0AAAAIAAABeHJvUk8AAAAIAAABeHN2U0UAAAAIAAABeHpoQ04AAAAIAAABeGphSlAAAAAIAAABeGFy%0AAAAAAAAIAAABeGVsR1IAAAAIAAABeHB0UFQAAAAIAAABeG5sTkwAAAAIAAABeGZyRlIAAAAIAAAB%0AeGVzRVMAAAAIAAABeHRoVEgAAAAIAAABeHRyVFIAAAAIAAABeGZpRkkAAAAIAAABeGhySFIAAAAI%0AAAABeHBsUEwAAAAIAAABeHJ1UlUAAAAIAAABeGVuVVMAAAAIAAABeGRhREsAAAAIAAABeABpAE0A%0AYQBjdGV4dAAAAABDb3B5cmlnaHQgQXBwbGUsIEluYy4sIDIwMTQAWFlaIAAAAAAAAPNSAAEAAAAB%0AFs9YWVogAAAAAAAAc1AAADrMAAAB0lhZWiAAAAAAAABgfAAAuFwAABQ3WFlaIAAAAAAAACMKAAAM%0A2AAAvSNjdXJ2AAAAAAAABAAAAAAFAAoADwAUABkAHgAjACgALQAyADYAOwBAAEUASgBPAFQAWQBe%0AAGMAaABtAHIAdwB8AIEAhgCLAJAAlQCaAJ8AowCoAK0AsgC3ALwAwQDGAMsA0ADVANsA4ADlAOsA%0A8AD2APsBAQEHAQ0BEwEZAR8BJQErATIBOAE+AUUBTAFSAVkBYAFnAW4BdQF8AYMBiwGSAZoBoQGp%0AAbEBuQHBAckB0QHZAeEB6QHyAfoCAwIMAhQCHQImAi8COAJBAksCVAJdAmcCcQJ6AoQCjgKYAqIC%0ArAK2AsECywLVAuAC6wL1AwADCwMWAyEDLQM4A0MDTwNaA2YDcgN+A4oDlgOiA64DugPHA9MD4APs%0AA/kEBgQTBCAELQQ7BEgEVQRjBHEEfgSMBJoEqAS2BMQE0wThBPAE/gUNBRwFKwU6BUkFWAVnBXcF%0AhgWWBaYFtQXFBdUF5QX2BgYGFgYnBjcGSAZZBmoGewaMBp0GrwbABtEG4wb1BwcHGQcrBz0HTwdh%0AB3QHhgeZB6wHvwfSB+UH+AgLCB8IMghGCFoIbgiCCJYIqgi+CNII5wj7CRAJJQk6CU8JZAl5CY8J%0ApAm6Cc8J5Qn7ChEKJwo9ClQKagqBCpgKrgrFCtwK8wsLCyILOQtRC2kLgAuYC7ALyAvhC/kMEgwq%0ADEMMXAx1DI4MpwzADNkM8w0NDSYNQA1aDXQNjg2pDcMN3g34DhMOLg5JDmQOfw6bDrYO0g7uDwkP%0AJQ9BD14Peg+WD7MPzw/sEAkQJhBDEGEQfhCbELkQ1xD1ERMRMRFPEW0RjBGqEckR6BIHEiYSRRJk%0AEoQSoxLDEuMTAxMjE0MTYxODE6QTxRPlFAYUJxRJFGoUixStFM4U8BUSFTQVVhV4FZsVvRXgFgMW%0AJhZJFmwWjxayFtYW+hcdF0EXZReJF64X0hf3GBsYQBhlGIoYrxjVGPoZIBlFGWsZkRm3Gd0aBBoq%0AGlEadxqeGsUa7BsUGzsbYxuKG7Ib2hwCHCocUhx7HKMczBz1HR4dRx1wHZkdwx3sHhYeQB5qHpQe%0Avh7pHxMfPh9pH5Qfvx/qIBUgQSBsIJggxCDwIRwhSCF1IaEhziH7IiciVSKCIq8i3SMKIzgjZiOU%0AI8Ij8CQfJE0kfCSrJNolCSU4JWgllyXHJfcmJyZXJocmtyboJxgnSSd6J6sn3CgNKD8ocSiiKNQp%0ABik4KWspnSnQKgIqNSpoKpsqzysCKzYraSudK9EsBSw5LG4soizXLQwtQS12Last4S4WLkwugi63%0ALu4vJC9aL5Evxy/+MDUwbDCkMNsxEjFKMYIxujHyMioyYzKbMtQzDTNGM38zuDPxNCs0ZTSeNNg1%0AEzVNNYc1wjX9Njc2cjauNuk3JDdgN5w31zgUOFA4jDjIOQU5Qjl/Obw5+To2OnQ6sjrvOy07azuq%0AO+g8JzxlPKQ84z0iPWE9oT3gPiA+YD6gPuA/IT9hP6I/4kAjQGRApkDnQSlBakGsQe5CMEJyQrVC%0A90M6Q31DwEQDREdEikTORRJFVUWaRd5GIkZnRqtG8Ec1R3tHwEgFSEtIkUjXSR1JY0mpSfBKN0p9%0ASsRLDEtTS5pL4kwqTHJMuk0CTUpNk03cTiVObk63TwBPSU+TT91QJ1BxULtRBlFQUZtR5lIxUnxS%0Ax1MTU19TqlP2VEJUj1TbVShVdVXCVg9WXFapVvdXRFeSV+BYL1h9WMtZGllpWbhaB1pWWqZa9VtF%0AW5Vb5Vw1XIZc1l0nXXhdyV4aXmxevV8PX2Ffs2AFYFdgqmD8YU9homH1YklinGLwY0Njl2PrZEBk%0AlGTpZT1lkmXnZj1mkmboZz1nk2fpaD9olmjsaUNpmmnxakhqn2r3a09rp2v/bFdsr20IbWBtuW4S%0AbmtuxG8eb3hv0XArcIZw4HE6cZVx8HJLcqZzAXNdc7h0FHRwdMx1KHWFdeF2Pnabdvh3VnezeBF4%0AbnjMeSp5iXnnekZ6pXsEe2N7wnwhfIF84X1BfaF+AX5ifsJ/I3+Ef+WAR4CogQqBa4HNgjCCkoL0%0Ag1eDuoQdhICE44VHhauGDoZyhteHO4efiASIaYjOiTOJmYn+imSKyoswi5aL/IxjjMqNMY2Yjf+O%0AZo7OjzaPnpAGkG6Q1pE/kaiSEZJ6kuOTTZO2lCCUipT0lV+VyZY0lp+XCpd1l+CYTJi4mSSZkJn8%0Ammia1ZtCm6+cHJyJnPedZJ3SnkCerp8dn4uf+qBpoNihR6G2oiailqMGo3aj5qRWpMelOKWpphqm%0Ai6b9p26n4KhSqMSpN6mpqhyqj6sCq3Wr6axcrNCtRK24ri2uoa8Wr4uwALB1sOqxYLHWskuywrM4%0As660JbSctRO1irYBtnm28Ldot+C4WbjRuUq5wro7urW7LrunvCG8m70VvY++Cr6Evv+/er/1wHDA%0A7MFnwePCX8Lbw1jD1MRRxM7FS8XIxkbGw8dBx7/IPci8yTrJuco4yrfLNsu2zDXMtc01zbXONs62%0AzzfPuNA50LrRPNG+0j/SwdNE08bUSdTL1U7V0dZV1tjXXNfg2GTY6Nls2fHadtr724DcBdyK3RDd%0Alt4c3qLfKd+v4DbgveFE4cziU+Lb42Pj6+Rz5PzlhOYN5pbnH+ep6DLovOlG6dDqW+rl63Dr++yG%0A7RHtnO4o7rTvQO/M8Fjw5fFy8f/yjPMZ86f0NPTC9VD13vZt9vv3ivgZ+Kj5OPnH+lf65/t3/Af8%0AmP0p/br+S/7c/23//3BhcmEAAAAAAAMAAAACZmYAAPKnAAANWQAAE9AAAAoOdmNndAAAAAAAAAAA%0AAAMBAAACAAAAEQBPAMABSwHvApUDWgQ+BTQGRgdlCKYJ4Qs9DJkOAQ9tEOQSZBPrFWMW4RhkGd4b%0ATRy2Hh0fciC6IfIjHyQ3JUEmRydDKDopNSooKx4sES0ELfcu6C/aMMwxvzKyM6M0kjWCNnA3XThI%0AOTU6HjsGO+481z3APqo/mkCPQYpCiUOLRI9FkkaTR5RIlUmVSpRLkUyOTYtOiE+FUINRg1KEU4NU%0AhFWEVoJXgVh/WXtaeFtzXG5daV5kX2NgZWFrYnVjgWSOZZtmp2ezaL5pyGrRa9ps423sbvZwA3ES%0AciVzOXRQdWd2fXeReKd5unrOe+F88n4DfxCAGoEggiODIoQghRyGGIcUiA+JCooEiv2L9ozvjeiO%0A4Y/ckNiR1ZLTk9KU0pXRls+XzZjKmciaxJvAnLyduJ61n7Sgt6G+osij1KTipe+m/agKqRaqI6su%0ArDmtRK5Or1iwYLFnsm2zcrR3tXu2freBuIS5h7qJu4u8jb2Ovo+/ksCVwZrCn8OkxKrFrsaxx7XI%0AuMm7yr3LvszAzcHOwc+/0LvRtdKs06LUl9WM1oHXdthq2V3aUdtE3DfdKt4c3w3f/uDt4drixeOx%0A5JvlheZv51noQukr6hTq/evm7M3tte6d74XwbvFY8kLzLfQZ9QX18Pbc98b4sfmc+ob7cPxa/UP+%0ALf8W//8AAAARAE8AwAFCAdEChwNSBCUFGgYuB0gIbgmzCwIMYg2+DyYQkxIKE4kVBBZ7F/oZZhrZ%0AHD4dmB7rIDQhaCKPI6kktSW4JrcnsSioKZ8qliuLLH4tcS5iL1UwRzE7Mi0zHzQRNQE18jbhN9A4%0AvjmqOpY7gDxrPVU+Pz8qQBpBDkIEQv1D9kTvRehG4UfYSM5JxEq4S6xMoE2SToZPeVBwUWlSZlNj%0AVGJVX1ZdV1pYVVlRWktbRVw+XTdeMV8rYChhJ2IoYypkLGUvZjBnMWgxaTFqMGsvbC1tLG4sby5w%0ANXFBclFzZHR6dY92pXe5eM554Xr1fAd9GX4pfzeAQ4FKgk+DUIRQhU+GTodMiEmJRopCiz+MOo02%0AjjGPLZAqkSiSKJMnlCeVJ5YmlyWYJJkimiCbHZwanRaeE58RoBKhFKIYox+kJ6UvpjanPahEqUuq%0AUqtXrF2tYq5nr26wdrF/somzlbShta22ubfEuM+52rrju+28974AvwjAD8EWwhzDIcQlxSnGLccw%0AyDPJNco3yznMO808zj3PPtBA0ULSRdNI1EvVT9ZS11TYV9lZ2lvbXNxe3V7eXd9a4FPhSOI44yXk%0AEOT55eLmyuey6Jrpgepo60/sNu0d7gPu6+/U8MHxsPKi85b0jPWB9nb3a/hg+VX6Svs+/DH9Jf4Z%0A/wz//wAAABEATwDAAUIB0QJ4AzgECwUABgAHHwhSCYgKzAwpDYEO5hBTEc0TQBSzFiwXpBkYGoob%0A8B1RHqcf7yEwIl8jfySVJaQmriexKLMptSq1K7Ussi2vLq4vrDCoMaQyoDObNJc1kjaKN4M4fDly%0AOmY7WjxNPUA+ND8qQCNBHkIcQx1EHUUgRiBHIEgeSR1KGUsWTBBNDE4HTwJP/1D8UftS+lP8VPxV%0A/Fb7V/lY9lnyWu5b6VzkXd9e21/YYNZh12LZY91k4WXjZuVn52joaelq6WvobOdt527ob+1w9nIC%0AcxJ0JHU2dkl3W3hteXx6jHucfKp9t37Cf8mAy4HJgsSDu4SyhaeGnIeQiIWJeIpri12MT41BjjOP%0AJ5AckRSSDZMJlAaVA5YAlv2X+Zj1mfCa65vlnOCd2p7Tn8+gzKHKosqjy6TMpc6mzqfPqM+pz6rN%0Aq82sy63KrsmvybDKsc2y0bPVtNq137bjt+e46rntuvC78rz0vfW+97/3wPfB+ML4w/jE+MX3xvbH%0A9cjzyfHK78vtzOrN5s7jz+DQ3NHY0tPTztTI1cLWvNe12K7Zp9qf25jcj92H3n3fc+Bn4VniSeM4%0A5CblE+YA5uzn2OjE6bDqm+uG7HHtXO5H7zTwI/EX8g/zC/QK9Qr2CvcK+Ar5CfoI+wf8Bv0F/gP/%0AAf//AABuZGluAAAAAAAABjYAAKZFAABVtQAATMwAAJ5IAAAk8AAADQ4AAFANAABUOQACI9cAAgKP%0AAAH9cAADAQAAAgAAAAUADAAVAB4AKAAyAD0ASABTAGAAbAB5AIcAlQCkALMAwwDTAOQA9QEIARsB%0ALwFDAVkBbwGHAaABugHVAfICEQIyAlYCfAKmAtQDBAM4A28DpwPjBCAEYASiBOYFLQV1BcAGDAZb%0ABq0HAQdYB7EIDghsCM4JMwmaCgMKbwrbC0cLsgwdDIkM9g1lDdcOSw7BDzoPtRAzELQRNhG7EkIS%0AyxNVE+AUbhT+FZAWJRa8F1YX8xiSGTQZ2RqAGykb0hx7HSMdyx50Hx4fyiB5ISoh3SKTI0wkByTE%0AJYQmRScHJ8koiylNKhAq0yuZLGEtLC34LsgvmTBtMUQyHTL6M9w0wzWwNqI3mTiUOZI6kzuXPJ09%0Apz60P8RA10HsQwREHUU3RlJHbkiLSapKzEvxTRlORE9yUKNR11MOVEhVgla9V/ZZLFphW5Vcyl4B%0AXzpgdmG1YvZkOmWBZstoF2lnarpsEW1sbspwLHGRcvl0ZHXSd0N4t3oue6d9JH6kgCWBqIMrhK+G%0ANYe9iUiK14xpjf6PlpExks+UcZYVl72ZaZsbnNSek6BZoiSj9KXGp5ypdqtTrTOvF7D/sum02LbL%0AuMO6wrzHvtPA48L4xRHHLclNy3HNmc/F0fTUKNZf2Jna1t0U31LhkuPT5hfoX+qq7PrvTfGk8//2%0AXvjA+yf9kf//AAAABQANABUAHwApADMAPgBKAFYAYgBvAHwAigCZAKgAuADIANkA6gD8AQ8BIwE3%0AAUwBYwF6AZIBrAHHAeQCAgIiAkUCagKTAr4C7gMgA1UDjQPHBAMEQQSCBMUFCwVSBZwF5wY1BoUG%0A1wcsB4MH3Qg5CJgI+glfCcYKMAqcCwoLeAvmDFYMxg05Da4OJQ6fDxwPmxAdEKIRKRG0EkASzxNe%0AE+4UfhUQFaMWORbRF2wYChiqGU0Z8xqbG0Yb8xyhHVAd/x6wH2IgFiDMIYYiQSMAI8EkhSVLJhQm%0A3yerKHcpQSoKKtIrmixiLSwt+C7HL5gwazFBMhky9DPRNLI1lzaAN284YzlcOlg7WDxaPWA+aD90%0AQIJBk0KnQ75E10XyRw1IKklISmlLi0yxTdlPBFAyUWNSl1POVQhWRVeDWMFZ/1s9XHpduF73YDlh%0AfmLFZA9lXGarZ/5pU2qrbAVtX267cBZxc3LQdC91kXb1eFx5xnsyfKJ+FH+JgQGCfYP7hX2HA4iN%0AihqLqo09jtSQbZIJk6mVS5bxmJmaRZvznaOfVaEIor2kdKYtp+mpqatrrTCu+LDEspK0ZLY7uBe5%0A/Lvsvei/8cIDxBzGOshcyoHMq87Y0QrTP9V417TZ8twt3mTgluLF5PLnIOlS64btv+/68jn0fPbD%0A+Q37Wv2r//8AAAAFAA0AFgAgACoANQBAAEsAWABkAHIAfwCOAJwArAC8AMwA3QDvAQIBFQEpAT4B%0AUwFqAYEBmgG0Ac8B7AIKAisCTQJyApoCxQLzAyMDVgOMA8MD/QQ4BHYEtgT4BTsFgQXJBhMGXwat%0ABv0HUAelB/wIVgizCRIJdAnYCj4KpQsNC3YL4AxLDLgNJg2YDgsOgg76D3YP8xB0EPYRexICEooT%0AFBOfFCwUuhVLFd8WdRcOF6oYSBjpGY0aMxrbG4QcLxzbHYceNR7kH5YgSyECIbwieCM3I/kkviWE%0AJkwnFSfcKKMpaSovKvYrvyyKLVcuJy76L88wpjGAMl4zPjQkNRA2Azb7N/o4/DoCOws8GD0nPjo/%0AUEBpQYVCpEPFROdGCEcqSEtJbUqQS7dM4E4MTztQbVGiUtpUFVVTVpRX1lkYWltbnlziXihfcGC8%0AYgpjXGSwZghnYmi/ah9rgWzkbkhvrHEQcndz33VKdrh4KXmdexR8jn4Lf4uBDoKUhB2Fqoc5iMqK%0AX4v2jZGPLpDPknOUGpXEl3GZIZrVnIueRKABocGjhaVMpxeo5Kq2rIquYrA9shyz/bXjt8y5urut%0Avae/qMGxw7/F0cfoygPMIc5D0GnSk9TA1vHZJdta3YvftuHY4/TmDegm6kHsX+6B8KXyzfT49yb5%0AWPuM/cT//wAAc2YzMgAAAAAAAQxCAAAF3v//8yYAAAeSAAD9kf//+6L///2jAAAD3AAAwGxtbW9k%0AAAAAAAAABhAAAJy1AAAAAMZ65TAAAAAAAAAAAAAAAAAAAAAA/+EAdEV4aWYAAE1NACoAAAAIAAQB%0AGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAASAAA%0AAAEAAABIAAAAAQACoAIABAAAAAEAAAJHoAMABAAAAAEAAAFNAAAAAP/bAEMAAgICAgIBAgICAgIC%0AAgMDBgQDAwMDBwUFBAYIBwgICAcICAkKDQsJCQwKCAgLDwsMDQ4ODg4JCxARDw4RDQ4ODv/bAEMB%0AAgICAwMDBgQEBg4JCAkODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4O%0ADg4ODg4ODv/AABEIAU0CRwMBIgACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJ%0ACgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQz%0AYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOE%0AhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm%0A5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIE%0ABAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZ%0AGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SV%0AlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4%0A+fr/2gAMAwEAAhEDEQA/AP36FLgZryX41fFrSfgp8A77xzq+nX2qxx3Edtb2tqOZJpCQgZsHYuRy%0A2DivgbQvij8cfjl/wUUvfgj438R/8K18NJ4fj1mKPwPMjyyRSJvWOW5lV8kjjKBec19DlPDWJx1C%0ApiE1GnBNtvsrXst3a6OatioU5KL3Z+nF/wCJfDmlz+Vqev6Jp0p/gur6OI/kzCrWn6ppmrWhuNK1%0AKw1K3BwZbS4WVc+mVJFeF6J+y58F9GeOebw1d+INQXO691rVrm7lcnqTuk25Psoryf4ieBdM/Z2+%0AI3hX4tfDQ3mieHZ9Vi0zxf4eW7kktLuCYnZOiOzeXKjA8rgENyOK5qODwdeXs6VR83S6STfbfS5U%0Aqk4q7R9tUVHNPDBbtNcSxQQqMs8jBVA9cmqWmaxpWt6c15o+oWmp2qyGNpbaUOoYdRkdxXk8krXt%0AobXRo0Uo980lSMKKdgZ70mPpQAlFLtPtRg4oASiq99fW+naHeajeSLDaWsDzTyN0REUsx/AA1geC%0A/F+kePvhdpPi7QjO2kajGZbZpk2syhiucfUVapycea2gr62OnqrfXkOnaJeahc+YLa2geaXYhdtq%0AqWOFHJOB0HJq1SgZ4PI9DUq19Rny6/7Y3wL85YINX8UXd2zMq20PhTUDIWU4I/1OM/jVJ/2lfEfi%0AF0g+GnwJ+JviiR1JF1qMEGm2y+hJllD4+i5r6fTSNJju/Nj0vTklznetsgbPrnFcV4K8er4u+IPx%0AE0EWH2I+F9XSw80PkXG6FZN2O33sV7f1nLo+9ToN2/mlp+CX5nO1O+svwMv4UeIPix4h0vXp/in4%0AG0fwNPHdKulW9jqn2wzREHLOdq7SDjjnrXq6srruR1cZ6qc18bfG/wAb+IvF3xkvfhL4W8RSeCvC%0AehaX/bHxD8VW5Hn2tsc+XaQk5CSSYYliCQEOBzmr/wCx/o+o6H+zJ4j8QX15rb+GdZ8QXOo+HYtW%0Au3nuINPVEjRmdySd5ieX0/ecVti8p/2V4ttRbatBee2t9+tu2vUUK/7zkWvmfXdLg18eaR+0V8Qf%0Ai1pT33wD+GCaz4ceWSK28U+I7021lMUJUskajc4yOziu21H4t+JfhJ8B9N1X422umah4z1LVvsGl%0Aab4RtpGF9Iy7o40V3Y7vlfJz0A4rlqZFi4SUJJc7duW65vu6Fxrxex9GgfNSV8eanr/7X/j7QrmX%0Awd4W8A/CK2kRvszeIzLqN6eu0lEeJUOMHBBxX01pUmoeFvgvbXHjHV11XUdL0vzdX1JINgmaNC0k%0AgQdOh4rHF5ZPDqN5xcnpZO7XrYqNRSOrHI6fjRjI4r4j0z9pvxz8Wknk+B/g/wAPQaCsjxDxF4v1%0AHyY2KsVytspViMg/x16z8LYPjt/wsG7uviJ46+GniPw40J2WegaXJFNDJ2+czuCo9xXTi+H8VhYO%0AVdqLX2W9fuIhiIydkfQNFPPIph4NeIbhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF%0AFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU%0AUAUNW0nTNf8AC99ous2Nrqel3kLQ3VrcRh45UYYIIPBr8dfhZ4fs/wBnn/g4tvfAMmpz3Xh3xJ4e%0A8vw6ly5Y2kLAtHbqT/CrllUDoAB2r9mx61+Tn7cHw8nT/gp3+yv8TLRNWtYJ9bttLvr3T0LPGUuN%0A65x0B34ya/SPDjGQlXxWX1p2p16U1/28lzJ+ulvmcONh8M7apo/WLPXNfI37Q+rQePfif8P/AIBa%0ADKL3WtS1OLV/EIhIb+zdOgJ+eT+4ZHOFzydjY6V6B8WvGnxYsNYt/CHwq+Hsur6zqMWF8S6lcLFp%0Aemg8GRwMyOyjkIFAJ/iFX/g98GtM+F+lanqd/qM/ir4ga5ILjxF4ku1/fXcmOEUZOyJckKue59a+%0AQwcKeFgsTUfvfZjo9e77Jfib1G5vlR8t+GLA/H74j/Fu7+OXj+90jwh4R8Y3OkW/hKDVf7OsPIjb%0A9zJclWUyeYu1sPkHdX254L8G+Cfhv8Nk0XwTouk+HPDMO6dbewiVIRkZZ/l4OQM5r88v2uvgT8P4%0AP2sPh/8AFTxJL4k0/wAGavrcP/CcfYVeSzAt1UxSSxx/Nlyixk4PBr6j8JfGUfFv4gjwp8OPBmpX%0A/wALY7CW31XxffFrOEFk2JHaxsu+U8nJbYAB3r6DOcN7bCUK1CbdOSu42tGDWjXm27vuYUZcrkpL%0AX8zmPhprvxz+LnxHuviXpfjPSPDXwsi1yax03w3JpqSPf2sEhikneUqWV2kSQKAcYAr2TWPiHqOl%0Afto+EPhw9pajR9b0O6vI7pjiQzwnPlj/AICGP4V8/fDvxN42/Zs8Ot8L/Gvw78R+JPBVje3L+HfF%0APhqNboSwTTPOI7iJmVo5FaRlyCwIAOR0qg+q/EPxT8afgb8VvFvgTVNFgi8Y39raWkcQa6stNuLa%0A5it3uVDYBJeItgnFcmIwftKkpOMVTUWo2trpp5t97jVXlilrfqVvH3xs8V+Nv2svFPwe8P8AxD0T%0A4DWmghU/tfXFSK81udwdotRMNphXjLLyScV71f8AxA1H4N/Av4YW3xE1J/G/iPV9YsNCudXskVI5%0Ap7mVYlmI4AX5gePSuP8A2k/iF8KfBv8Awj+i/ET4X+IPHya3IY/N0zRPtK2sY+88kgIZcZHAya+I%0AvFM91afD3x7P8M4vHdz8CPDVtbeJoT4ktGRtKvrS485o7Qsd7RFUU4IGMnk16OFyynj6FG0PZwXe%0A3vPb4t7t9H8iKlV0m9bn6EftEfHc/AH4YaL4rn8H6r4v0671WOyuItOuIlni3g7SkbMGlYkAbUBb%0Avjg12Hgf4yeBPHn7Pn/Cy9M1UWXhuGN21E6ghgl054/9ZHOjAGNl7ggcEHoRXztfat4a+If/AAUv%0A8Kf8Jdq+nr4U8P8AhBNa8J291OFt9Qu5yitON3ys0SMygZJ+fPavL9R0nWvFunfttaF8MLaHV9I1%0AGa0TTotPYFJ75reMXKofu/dEecHrmuNZPhXhYQnFxmrSlLpaTStZ6XSdxyxE021qux9ZfF3xjo+v%0A/wDBOj4keLvB+sWWt6Re+Db6Wwv7CcSRyq1s+GVgcd6n/Z+8WeF9c+BNn4d8NSTSt4Xgg07UN1uy%0AIs/lh2VSRhuvJGetfMPjv9m34m+Df2TfFul/AfxDZ6Zo+s+GJV1TwPqts00KztbnzDaOGHluzE/K%0AQRk9RX0d+zB8M5/hb+x94c0XU5r258R3q/b9bmuwBK9y6qGBxngBQBzUY3CZdRymTp1uaTqe6utr%0Aa8y/IqnOpKqrxtpqfQVKDg0lHevjztHfxZr5g+EF2LD9tz9o3w5dlYryXWLLUoIyQC8L2UI3gdcZ%0AOM+tfT3Q15DqHwY8O337ZWg/GyO91Gz8S6dpMumy20L4gvInVgDIO5XPH0FduDnRUakanWOnrdNG%0AVSDbTXQ/Njxlr/2v9sL4qeDPElh4quPAb+O0vfHd1oelT3c89tGkjWNrIkKM/klt7E4x8gB619pW%0AH7QUPip9K8HfCz4SfELWrCaNLWW8vtDm0mxsbbGzO+5WPdtXoq5Ne/6d8PvCOk/FrxF440/SILfx%0AHrtvDBqtwP8Al5WLds3Dpkbjz712SJHGu2ONIx6KMCvpMz4jwmJjTSofAkt2ldJJtpbvTvskc1HC%0Azg2+bc/G7wT8Z/jF+zZ8HvHvwa8IfDzQtaPhTxhNo+iXl7qYE1y91cH7KiwBt7/KwO7bjAJJwDX2%0AB8dPCnxN8Qf8E19J8SaxcWv/AAuPwk8HiOOTTowqrcRbt8aAf9M3ZT9K9X+J/wCz54W+IviXTPE9%0Ale3Xg3xvp+ox31vrumxq0rSIhjHmKeHG1iOx961PCHw08aaJ4pmu/FPxa1zxxpUtq8Eml3mnpFE+%0A7A3Ehj0GRj3rux2f4Cu6OJpwjGonzTVneT6q+qs9exlTpVouUZarofEXhH9pL9oz9ov40eEvCvwu%0A0rQPAPhc2FrqfiLXmmivpreB1VjEcFkSVh0T7wyMgV+oPlBrHyZ8Thk2ybl4fjByPevh+w+AfxH/%0AAGevEvijWf2bG8N634e8Qag99qHhDxE726wzv1eC6RXITP8AAY+Oma+nPhL4f8ZeHPgpp1l8QPEH%0A/CS+L5Wa41K6UYjSRzkxx552L0Ga4+K62X13GpgIxhSVrJfE293Lro9FrtsbYWNSOk22zitZ/ZZ/%0AZ/17X7vVNQ+FnhE390++4mhsEiaRvU7QMmvL/HH7Mmg+A/BeqeOvgPeaj8NfG2i2z38ENjeSCx1I%0ARKXNvcQZ2OrhSuSCRnPavfPjNqHxK0v4Ealf/CfSrPW/GEMsbQ2Vw2BLHn5wueN2OmSBXhOva/8A%0AtKfF7TdQ8JaD8PbP4OeGb6NrXUPEHiC/FzfCB12yeRbRDbvKkgFpOCc4PSubLcRmNSKqOuuROzUp%0AdPOL1enZMdWFNfZ18j6G+FXjmH4k/s9eE/G8CLENVsVlkReiuCVcD23A16BXJeAfBelfDz4OaB4L%0A0UOdN0m0WCJn+8/csfckk11tfN4l03Wl7P4bu3odUL8quFFLg4zSViUFFFFABRRRQAUUUUAFFFFA%0ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFACjPvVS803T9QNu1/YWd60Eglg+0Qq/luOjLkcMPUc1Jc3lrYWT3N7dW1%0AnboMtLPIEVR7knAryDxD+0R8E/DVwINT+I/hua7LbRbadMb6Un02QB2/St6NCvUd6UW35ImTS3PZ%0AuRzRnmvl6b9rX4aTXN3DoOjfEnxRNAM7dP8AB99tf/daSJR+tUIv2q7e4Y+R8FPjfIB3bw+E/wDQ%0AnFelDIMwmrqk/wAF+pm8RT7n1Vc29teWMltd28F1byDEkU0YdGHoQeDTba2tbOzS3s7aC1t0GEih%0AjCIv0A4FfKsv7VaQSbZPgd8b/quhKw/SStGy/aj0m4iZ7r4VfGTTVUZPneGZG/8AQSauWQZlGOtN%0A29V/mHt6d9z6hGc8UvJ5r5Tuf2vPA1q5WTwR8XiR1C+Drs/+yVBD+1/4LuJlSD4e/GSRj0/4o+5H%0A81qFw/mNv4T/AA/zH7em+p9ZMiumJFVh6EZrN1fR9K17wnqOhavY2+oaRf27295aSr8k0bjayEeh%0ABIr5pv8A9qJYIhJZfBL426qhHBh0JUz/AN9uKjtv2kfFl/YrPYfs3/GWRScbZ47GFh+DXANNZBmE%0AVzclvmv8wdan1Z6t4u+B3wr8ceAdK8NeJPB2m3mlaXEItNWJngltEHG2OWNldRgdA2DXU+C/A3hL%0A4d+BoPDfgzRLLQtHiYsILdT8zHqzMcs7HA+ZiTXhF38cvi5JpZl0j9mb4gzzdkutU02If+lJrnk+%0AOP7R5kBP7KviBY8/N/xUen5x/wB/62jl2YVaXJKa5ezmvyuR7Wle/wCh9ij72aD1r5QuP2lvEXhx%0APP8AH3wC+K3hnSkAM+oW8VtqEcI7sUtppJCB7Ka+jvCninQfG3w90zxT4Y1GLVdD1CES2tzGpUMv%0ATkMAQQeCCM15uLy3EYaKlUjo+t01+BrCrGezOgooorhLCjB9K+cvFv7TvgHw94u1Lwzoel+MvH/i%0Amyk8q403w9oc8vlyddjTMqxKeR1fvWFD8Qf2mPGNyP8AhF/g9ofgTTGUFbvxfrKGbn0itvN/UivW%0Ap5LiZQU52hF9ZO3/AAfwMnWittT6qoJCrlmVR6k18sN8Kf2g/Etmg8XfH06Grj99b+FdIWArznCy%0Akq3tnFPl/ZR8J6tdLL4v8d/FPxefK8uSPUPEs5ice6ZxQ8DhIP8AeYhf9upv87C9pN7RPpqXULCB%0AGeW9tIlUEsXlAwB3rirj4s/DK1MouPH3hGHy8+YH1SIFfrzXl9l+yV8AbK2SP/hAdOvQF2lrwmZm%0AHuW61raP+y9+z3oN+9zpfwj8D207fecaXGSf0qvZ5Wk37Sbf+FL/ANuYXq9kaM/7RvwIty4l+LXg%0AVSv3gNXi4/WsDUv2sf2d9N0yW7m+K3hOeOMfMtterK/4KDk16FZ/B34V6ddGaw+Hng+0lPV4tLjU%0A/oK6W28I+FrJSLXw/o9uPSO0Qf0pxnlSfwzfziv0YfvvI+fLP9sX4HappX2zRdZ1zXbfON+n6PLN%0Az+AqY/tYfD+SyklsPDnxL1Bl/gg8L3BY/wDjtfS8FpZ20ey3tYIFHQRxhf5VP8v90Z+lJ4nLVLSh%0AJr/H/wDahy1e/wCB8nj9rjw0xwnwy+NL/Twfc/8AxNTj9qvRH+58KvjW3/coXP8A8TX1Qceg/Kj8%0AB+VX9cy3phn/AOBv/IfLU/m/D/gnjvwy+M+m/E3xLq2l2fhDx74ZmsIRLI+v6JLZxyAkDCM4AY89%0AB6V7GeuaBwegH4UZJry8TOlOo5U48q7Xv+Jor9RKKKKwGFFFFABRRRQAUUUUAFFFFABRRRQAUUUU%0AAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA%0AUUUUAfPPiH9nLwv46+Met+KfiDrvifxVY3LRjT9Ce/a3sbFFzkBY9pcnIyWPavSNB+FXw18Lxoug%0A+CPDdgUUKrrYo7gDp8zAn9a9ByP8imV2yzLFOCh7RpLonZfciFTje9iCG2trYYt7eCAf9M4wv8qs%0AZPrSUVxuTbuywyfWlyfWkopANKRnrGh+qigIgIIRBj0UU6indhYXJ9aMn1pKKQC7jRuNJRQAjAPG%0AyOqujDDKwyCPSqOl6VpmiaJHpukWNtp1jGSY4IIwiLk5OAOnNX6KrmaVr6BYKKKKkCnbadp9nczz%0AWlhZWs0zb5pIYFRpG9WIGSfrVzrRRTlJt3bDYKO9FFIAooooAXPFJRRQAUUUUAFFFFABRRRQAUUU%0AuDQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR%0ARQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRkBgCQCegz1oo%0AAKO9FKOtAHzX8fvjZrnw/u/DPw/+Gnh+Lxl8ZPFs/k6Fpcsvl29pGP8AWXly+DthjUMx4JO3AHNW%0Av2Zfif4u+J/wG1Wf4g2uk23jrQNeuNF1v+y9xtJJogh3xFgDtIfHTtX59eL/AI7+KtD/AOC7Xxs8%0AH+D/AApN4w+Kd54Xs9F8CRMhNvppdImluZT/AAxoN8jdM4IyM19r6FN4d/Y2/YP06bxpeap4m1i5%0A1MHUJbK38y41bVbrJKoo9dmB7LR1GfW9FfI+lfFr9pjxZ458Ox6R+z5p/hDwpdXif2jqHiXXM3MF%0Atu+dhAioQ+3kAk4PrW18bfjN428N/GLwb8Ivg/4d0fxN8T/EUUl4z6tI4sdKsYv9ZcTBCrHkqoAY%0AcsKLCPp7vTttfCUv7U/jfTf2JvGXiPWPC3hxPi1ofjH/AIRBNPtrh/7Pur90jeORSWLbCsmSu7OV%0APNeaWv7Vnxs+HPh3xv4W8c6X4O+JnxA03xpY+HbLUNJD6fpkNxeJEwjuGZnIEbzeWTkZK0Mdj9ON%0AtJjjNfBXhGw+NHxE/bb8P2/xM+N/hDQr/wAH2/8Aal/8O/A0BUTCQeWhu5ZHkZkG7gDbk89qteJ9%0AW8ffG3/go74l+EFj8QNS+FngfwNaWl7eQaOY11LxDJMN+Q8ittgX7p2jJIbmhBY+68UY5r5Q/aP+%0AK3xO+H/jP4N+DPhdH4NXWvGuvyaV9u8TQyywwbLaWbIEciEsfKx171y+neEPFvwe1vX/ANoj9oz4%0A5az4pGk6Y8a6HpFmtpo9kjuv+rgGXkkJCgFnNDCx9qkhQCxAycDJ6mnYOa/Nj41ftOfDnx1+y94S%0A+KvhjxfrXhnTvBnxC0m58Uaddo1pewW32qIus8Wc7CnPoQa9c+IPiv8AaI8Z+GbvxP8ACzX/AIfe%0AB/hAdFOqQ+KLmxkvtTmtxEZGaOHzFRGCjjcrUxH17f6lpul2yzanqFjp0TMFV7q4WJST0ALEc1cV%0AkckK6sR1AOcV+Xfij9mf4deI/wBlOH49fEj4yfGD4ojTbH+3kmudZWztbgKuViNvAiKqhvx964X4%0AL+CvjFL8dNM0TU/jL418KeJfin4DTxbdXtvLFcHT7j7RHILe3imR0SMRZjI25xk9eaLDP2B281my%0A6vpEGqQWNxqumwXs7bIbeS5RZJG9FUnJPsK+JfEX7M/xTbwB4lvPEX7Ufxl8SwxafJMmmWS6fYid%0AkUts3x228bsYyCDXE/BT9nL4Q+Jvhh4M/aQ8MXvjuPxrZaTPLZxa74muL21s9RhaSOWSSNmG4rLG%0AwxkAhRxRYR+j7sscbvI6pGilmZjgADqSa4zT/iR8PNW8WHQdL8c+EtR1rOBY22qwyTE9wFDZJ9hX%0AnHwX8dTfF/8A4J/+GvGfj23tNPOu+HWfWxA7Qw7GjIlZTnKLtJOc5HrXy9+0X8Jfgd4A/YRt/Gvw%0Av8N6Pouu2epWr+GNd0mdzcyTvLxibcWk3DfkMSDj2osB+iNxqOnWup2tldahZW15dEi1glnVZJiB%0AkhFJy34V8x6xqWrXH/BYTwToj6tqEGh2/wAOtSu109JcQzzfarJQ7L3KhiB/vGvlv43+FfG3xe/4%0AKO6xL4M8RXln8RvhH4T07WvDejify7e+u3eOeWOVR1EiM0We26ua8RftTeGLn/gql+z94n1zw14u%0A+H9xb6Bqei+Ln1+za3gs5J2tnSJWPDkvDwfTtRYdj9cTSVFBcQXdhBd20iy280ayROp4ZWGQR9Qa%0AlpCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo%0AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKMGijJ9aAPkDxN8IfjT4n/AOCs%0A3gv4nyeOV0v4KeGtBeODQLW6dXvLyRvnMsY+Vl2qnJ9OK+wDwaSigApR1pKKAPy2+Lfwd+N/w6/4%0ALcaZ+0t8HPh5H8RNA1bw01p4l08X0Vs6lIinyF2UFyBuHqcCqP7Uvxm8YfFf9kPxRo3h/wCDfxZ8%0AC+PvB5h8U6fea1pBSxWa1baU84ZRztlYhQTkA1+q+T61jeItA0zxV4F1fw3rUJuNK1O0e2u4wcFk%0AcYOD2NO4Hy/8H/jhreif8EsPCXxs/aO1fTdM1a80r+0L57W18vKSMxgjSJRlpGTbhVBJJr5++MXi%0Av4r6V/wVp0iw+DnhjT9T8VePfhs1vper6rOsEWjwLNA8twyMQzFQuQgBJOOK9+8Lfsa+A9F8V+H7%0A3xL4v8e/EXSfDsqv4b0PxDfpJY6aEx5YEaoN+3Axu9OlfRmqeAvCmsfFrw145v8AS45fFGgRSxaX%0Aeg4aFJVKunupB6UXGfn9+0N8F9S+DX/BHHV4vCsN1438daDr0fi2/vnUtLf6jkh5yOpA3KAPRRXi%0Avw2+En7RnxY/YF1DwJrngOx+Gei+MbmXxJ4x8ZavdR3mp6jPPIbrzLSFGcqw3ARkhSuFxiv2Xnhg%0AurSS3uYYri3kG14pFDKw9CDwaWOOOK2jhiRI4kUKiKMKoAwAB6VNgufjP+xj8XvDPgm+vtW8S6b4%0A5+KXx/8AHWrpa65Npfhq4aTSrGEskJupSgSMcksC2TxxxXrH7et7DoX7RHwW8QaL4kT4TeLLa3vL%0An/hPVspJJGii2smnERqTIJGLfuyD97pzX6a2mk6RYXUs9jpmnWU8n+skgtlRn+pA5pmpaPpGsCFd%0AW0vTtUWFt8Qu7ZZdjeo3A4NFguflr+0n41+Jvjb/AIJKfAf4wppdj4P+Lq+IdJng/tCL7Otlc3ZF%0Aqz4kA8sfvy3zYwBVL9qTx34ku/2O/AP7O3wy1e6+OHxhEttqniwaVdC8kjtLdxLMZpVJVWZ3UIpO%0ASEOBxX6jeJ/CPhnxp4FuvDPirRbHW9BuVAmsrmPMbYII6dCCAQR0rn/Avwo+HHwytLmHwH4Q0jw3%0A9oI+0SW0ZMkuOm52JYj2zRYLnwD+2x8FvAPxT/4JyXPxxv8AwPq+m/ECDw3ZX01nbo8V1coER/sd%0A1GvMu3O3DZxjiv0U0jRtLvfgZp/h8adHY6Pc6Ito1kqbVjieHaUx24JFdPNBBcWjwXEMU8DDDRyI%0AGUj3BqUAAAAAAdAO1MR+TGsR+INQ/wCCEPx8+Gunm+/tjwRrmoaKyQ/PNHbiVLmPaB1xHcLgegrv%0A/h/+y34y0D9qH9nX46eGviZ4r+IkcGktb+JbnxJflgunzWTeWIImb5BuZBtUcda/RK00HRLFNTWz%0A0qwt11G4M9+qwjFzIVClnH8Rwqjn0FaccccMCRQokUSKFREXCqB0AA6CncdxLnB064U8gxN29q+J%0AP2ZbHUPE3/BNjx74etUlsbqfxJ4osrORuMltRuwrDHQZNfb/AOtVLHTrDS7A2um2dtY25keUxwRh%0AF3uxZmwO5JJPuaQj5a/Z8+H/AImP/BITwn8LvF1hP4a8QyeCZNEuo5x88LPA0O8j/gWcV5D4B/Z0%0A+N+r3Xwq8GfF+78F2Xwq+G1x9q0+00WZ5JdeuEY+RJOpGEVFJ+XuWPFfodmjNO4Hjln8EvDFh+3B%0ArHx5tri8TxRqfh+PRryDP7l442BV/wDeAAH4VS+PX7P/AIC/aK+F+j+FPH0Fy9npmtQatZy20hSW%0AOaLOBkdiCQRXuFFICrY2VvpuiWenWieXa2sCQQrnOERQqj8gKtUUUAFFFFABRRRQAUUUUAFFFFAB%0ARRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF%0AFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU%0AUAFFFFABRRWbY61oup3t1baZq+majc2rbbmG2ukleE+jhSSp+tAGlRRXJePPG2g/Dj4Pa/438TTP%0Ab6JpFqZ7lkXLNyFVFHdmYqoHqRQB1vaivibTv2yLm0sLLW/iD8BPjD4D8F38az2XiCXT4b2EQNys%0AksdtLJLHkc4KcAivrHwf428I/EDwNaeJfBXiHTPEuh3K5iu7KYOv0YdVb1VgCO4oA6iiilHJoASi%0AlIwaSgAorz7wF8SvDvxGm8Wjw6t80Xh7XbjRruaeHYkk8Dsknln+JQykZr0GgAooqlNqem22s2en%0AXOoWVvqF3u+y20kyrJPtGW2KTlsDk4oAu0UuDVHUdT0zSLEXOralYaXblwglu7hYkLE4AyxAyT2o%0AAu0VSvdT0zTLSG41LUbDT7eWRY4pbm4WNZHb7qqWIBJ7DvUGt63pHhzwpqGu69qNppOjWMLTXd5d%0ASBI4UUZLMT2xQBqUVxngD4h+C/il8M7Lxl8P/EFn4m8M3bMtvfWwYK5U4YYYAgg+oro9S1fSNH+x%0Af2rqVnp32y5W2tftEwTzpWBIRc9WIB4HpQBoUUd68x+L3xIg+FXwQvPF0lg2r3CX1pZ21ikgVppL%0Ai4jhUZJwMby3/AaAPTqK84+JPxO0H4U/s96r8QvFolgsrG0WQ2kI3zTzMPlgjH8TseAKu/DPxVrf%0Ajf4E+GvFfiPwnqHgbWdTs1uLjQ751aezLDIRypI3YxkZoA7qiijvQAUV8efGT9rjTvhf8b4/CGi+%0ABtf8d22ly2p8aavpxT7N4eiuZo4YjIWYFnLSKdqgkAEnGK938KfF/wABeNfjL4s8A+H9WlufE/hy%0A3trjVLWS1ki2R3ClonVmADghTypIyKB2PTKK4H4mfEvwn8JPg/qfjXxjeta6XaLiOGJDJPdzMcRw%0AQoOXkdiFVR3Irxr4N/GX40fED4uTaf45/Z/1v4b+DLnS2vtJ1u71O3md/nULFNEjkxyMrbgBkfKc%0AkUCPqOivFfjj8atP+Bvwzs/E+peD/GnjC1nuxA0HhyyW4lh6fOylhxz2yT6VW+H37R/wh+JXgTW9%0Ae8P+KPsaaJafatcstYtJbC706MDJaWKZVYAeoyM8ZoA9zxiivz0uv2vfi5Fotl8U1+B8cX7Pdxqi%0A2ia7Pq6LqbwtJ5YuxbZx5RbgZbPtX1X4x+Mel6E3iXR/Cui6t8QfHek6PFqf/CNaSEW4milOIyGl%0AZEGTjqw4p2A9gor4B1n4p/tX6t8QfCnhu50r4X/A658VPLBoVrq93Lql/LIkTSNuWGJ4k2qpPL4r%0Aq9F1X4tfs/W+h6l8bviLJ8Wr3xj4otdGjWwsls7LRRJkCRQxBOe/A6UWA+0+2aK+Yf2hvHOu+B/i%0Ax+z1/ZmrXem6XrPj2PS9ViiztuY5onVEbHbeVql8dP2tfh78FPHvhDwpcXFvrfibV/EtppN7p0U2%0AyTT47lZSk7g4yuY8cZ60WHY+q+tHevzx+JH7SHinS/8AgvV8HfgHoF6V8J3GhSz+ILdDxJPIrNHu%0A/wB1djY96/Q8/epCEooooAKKKKACiiigAooooAKKKKACiiigAooooAKK8c1/4/fCbwx+1R4a+C2t%0AeLrK0+I+vWzXGm6SQS0ig4GWHCk4OAeu046V7H3oAKKKKACsTxLrcfhr4ea74iltpr2LTLCa7eCH%0A78ojQuVHucYrbpskSTW0sMiq8ciFWVhkEEYIIoA8x+C/xU0f42/sz+FvidoNld6dputwu6Wlycyw%0AMkjRujcDkMhHSuM+KP7UHwi+D3xLsPCPjLWb+PWriAXE8dlZNOtjCSAJpyP9WmSOeeteffsZW82i%0A/C74reDZL03cXh/4latBbqBhYY5pvtKoo7Aed0ry79lvWH8af8FMP23IPE/2TWJbPxHDpMCXMKti%0AxQSKISCOY8AAg8HjNMD7307xR4c1bwDaeKdO1vTbrw5cwCeDUVnAhdD/ABbjxXE3fxx+D9jqzWF3%0A8SfB8F4pAaJtSTIJ6d6+ZPhN4N0Tw3+1f8cf2YdT0uy134USWFl4n0TSbxRLFZLePcRzWoVukYe2%0A3hegLtivP/2hLf8AZT+DPizw98MdE/Z++GHib4u+L4jH4e0y80a2gtyWJQSz3EihVUHqNwY44osM%0A/Si1urW+06G8sriC7tJkDxTQuGRwehBHBFT14r+zv8NdV+E37IPg/wAC61qMepapp9t/pDxOWijL%0AHPlxk/wL0FdFqfiLxzZ/tQeHfDdr4Sivfh7qGkzS3fiBJT5lndxk4iZc/dZduDjrmkI9IoopRjGT%0A0oA+Y/2mvjj4g+Efw90nSfh14etPGPxZ8RzNB4c0a5kKw/IN0k823kRouScYzg816X8FfiIPi1+y%0Av4I+In2aOzl1vS47me3jJKxSEfMoJ7A5r45+D11YfEX/AIKZftGfGLxn4w0+88IeDboeEfDH225S%0AG205VgQ3ZBYhQTI8qkmup/YP+KXgfX/2crz4U6L4m0DVfE3gnULqyurTT7pZgbaOUKk6lSQUbcME%0AcUxn3bXi/wAXNb+OGhz6FefCLwl4R8Z2m9xq9jq2oPaTYKnY0UgDDg4yCpyM9K9opR1pCPzdf40f%0AtoePv2nvEvwk8KeDfhP8N9V0Tw/FqV/qGpTT6rGrTMywxgo0WGbY55BwBWH4a/aE+IH7O3xei+HP%0A7RPi7xH8bfjR4tC3mj+F/Bvh5UtNOgJKhUcuS2SpJJ6V7n4CuYPDH/BZP406HrEy2t94s8KaXqOh%0Aq/AuorV7hJwh7lDPFkDpuFeeH4jfDPwR/wAFW/jx48+MXi/w94avPDmhafp3hiDVZlilNk0CzSSW%0AytzIWlklU7MkkYqhnUfEn9p2x8Uf8E9/jRrHhCx8Q+D/AB7oMEOmXuj6zCLa90+a8njtkcDJB4kL%0AKfavMbX4ceH/AIEftRfsky/D4anbeJPFsc9n4wWXUJZ21OExQSvPMrMRuSR2wwA+9ivFvjhpXjvx%0Ap/wTE/aQ/aGudN1Lw5eeMNZ0e88PaffwlZrXS7S+h+zySxkZVmBRiCM8c19w/s7/AAJfSZ9H+NHx%0AE8Y6j8Tfidqnh+2itdRuwEttKtWjVvItYVASMHPzMACxAznAoA+u6+Xv2zVkT/gnJ4+1FbF9Ti0x%0ArPUbi0U4M0UF5DJIP++VJ/CvqGvKPjnr3gHw7+yT48v/AIoarY6P4Hk0mW21K5uz8gWVSgAA5ZiW%0AGAOc1KEdF4B8R6F4/wD2fPCfifR47e48Pa1osFzbxModBG8YOwjocfdP0r8f/wBtfUvjT+yj+2J4%0AM1n9mi90TwpoHxRvotKudG8jzYG1JnGJlh6R55yVwOTxVL9k79tm9+HnwL8JfCafwrL4l0LRru9g%0A0uawc3WrajZtcSPaLDZxkyg7WALOgAGOa9Y+K/wj+P3xY8X+Cv2ovHPhnULOfwN4gtdR8O/C6xkW%0Aa6i04SL58soUkPdbCW2DJHIA7UxnoM37TXxo/Zv0y/8ADH7Rmn+H/iL4il8PrrPh3UfDkbWP20LL%0AHFcW0qMZMNGZoyHHByeBX6Exsviz4VQmU3mkDWdKViIpAJ7bzogThsY3Lu646jpX5weKfDviL9sT%0A9ofUfFGkeCPF/gbwp4a8C3ml6be+J9MksJb/AFG6mgl2JFKqtsT7KoLYxl+teWa98Yvjp4j/AGsf%0A2arPwN4P+Kj+KvAkDWfxL8FJZzWlrdLEpR5lnkAglWQLlDuPDDFMD7L/AGY7zx34H+JPxL+AfxH8%0AWXfji68KmHUdB8Q3qBJ7rTrgttWXHBaMhQT3zUvw1/bI8BfE/wCM/jzwJa6Tq3h+80h7mPRdRvXH%0A2bXxACJmt2wOUcFSvJ6etbHwZ8D/ABH1T44fEv4xfFPR4PCereJrCHS9I8Nx3KTtY2cW45ldCVMj%0AErnB4welfPXwN/Zu0j4i/wDBO3xN8P8AxzpOs+G/Eej+Ptbl0PVIGe1vtPkkm3pNBKMMFYMucHDY%0A9qQHpn7F/jDw5a/sp+BbS/1KY+JviDqmr67ZxTL80u+4mnkGR/dXd+Vfcfevx0/Yt0Xxpof7TXw9%0A+HPxQ1HXLzxB8N7bVNL0nSYfD0kEFjHtmj+1XF0YwsglQnYQxzvWv2LPU0MGFfJvxLsZb/8A4Kq/%0As6sDJ5Njper3TBWIGfIaMEjuPnr6zHWvk348XHi3wR+0/wDCP4t6R4Q13xn4Z0uO80vxDbaHZvdX%0AtvFcRkpMkKAs6h0QHAJwaEI4T9tnx9/wi138CfDN/wCOPEXgHwx4r8WtY6xf6IUW6ZAqbUDuCFUl%0Azk49KyvDf7Nv7PWu/tYCx1L4veOfip4t8Owx3cvhjVPEwnt7ZgwKTSRxIgJBxgE/hXhX7V/gP49f%0Atu/A28svCfw9vPhj4P8ACcp1PR5vFEBttW1u7QfcijOHgjwOpClie+K83/Y117wz8B/2fr8+Cvht%0A44+Iv7UfjGZzrGm/2Hdxx2Em47IZ7qZQqRIcF2LckE5pjPdP21tI1z4o/HGTwdp2sXmjaF8MfBx8%0AZSx2lwUNxerdWywBgOqrF9o4z3FYn7Z3xc1D4g/sffAX4VfDW8sPFXjX4k3FgbrSYLoGR4fKjZ/N%0ACklYyXYN9K5Hwn+yB8ZvHP7bfxGsvjv8VvHssHiDwWk91P4cuZbS0ZmkwLBplxvSPdnbkg4rE+Af%0A7DvjqHwrpl9YWUPwW+L/AMMfG15a6J4wnsBOfEWmNskieRXDCQYYrkg9MUAfXfirwNqf7LX/AAQw%0A8aeFvBOqhfGOheEJ7qTULZQrvdMAZ50TsMliOuK+C9f/AGg/iP8AD/8A4JveAtN+PF5earrdnqOn%0AeKfBvjeKDzIdXtgXWW2kI4S4j3n2YMOmOfvWP9ln4xeO/j1oHi745fG5PEelaVp9zYnRfD2nrYQa%0AjBcRPHJHchVUSJhycHPIFe32X7OXguL9hR/gLrMa+LPC0djPbWjatCsrwB2dkK5BwULcEc4FFwMP%0Aw9+0RpHjT9pX4UaV4S1LSdU8CeNvCc2qWF2h3StOm9jFkNhSqrypGcg1+T/xc+IPjay+IGvfGrxb%0ArGra18LvHnjmHStCsI2PkaVcWGo2z25PJGHiE4zxzivq79nP/gnXL8G7D4c+IR401zTPGvhrxRNe%0AXEA1F7iwubM3DDakRYrG8sG0MQByxr6O8d/soeGpv+CZHiX4A+DrRLuK5lW5sJtSkBkhuDcRyNMr%0AnlXChsMDmkgPlMfH7Qfi98R/ghY/F7xP4f0Dw3ol9qniTXGupBDBOLa4MdkjKSd2Nj59a9X8Zf8A%0ABQ3wZceP/Cum/BLwz4n+MGkNqOPE2qaJpbyw2dqFJPlklQ0hIA54Gc81xvxH/wCCbHhbWfAfwjn8%0AFy6JN4n8FaU9pJa+Lo2v7LVC7mVmmBDFmEjvg+hA7V6poH7Nfx21T4dWPg3xZ8VvDPw18DhSl7oX%0Aws0VNKNymMFPPVFdAR1KkGmB9MfBP42+DPj58HG8a+BzqaadFfSWN1b6hb+TPbzx43oy5IyNw6Gv%0AW5XMVpLKF3lELBfXArjfh78PPCPws+Fen+DPBGkw6PoVmCUiQlnkc/ekkY8u7Y5Ykk12tSI/Cjwf%0A+0R8M73/AIJh/tB2Ouy+ILr4teJde1C61b7Hpjzs88dx5kC7s8Ku0j/ZGa+rv2N/HOk/GL9sDxt8%0AS9CtJLaxtvht4d0edyQd9zG975obH8Y+Xr2Ir7a+H3wb+H3wy0DxPpXhLQbex03xBqlxqOpWr/vI%0A5JZyTIAGyAp3EbRxg18vaD+wtovw4+JfjDX/AIIfFXx58I7bxTOZtZ0vTGjmtXYkndGkgIjYbm5X%0AB5puzHc4r9tj4y/D34Uftg/s433xeubtfhxY3l3qlxb29sJ995HDJ9mLJkZCyBGGe4rlPGf/AAUE%0A+Jfinw9Gf2bf2bvGfi+3uYy8PiHxABa2aJxhxGDlh/wMV9B2v7CvwS1S2uZviinif40a5cRFJNT8%0AY6vPeOgIwfKVnKxf8AAqna/sF/B631YhvEnxduPD4XZH4ffx1qP2CNP7gi87G32xigD8+fDv7Vnx%0AG8efFfwdo/xt1S+stL0P4hWM3i2W20lrTTNIiHlvHG0qyOZMktuycY7V6V+054Z0/wDaW8T/AB11%0Af4HzEaRonwymt9Z1/SQ0cOrXaXENytsCuPMIjicE+2K/Uvwz8HPhZ4P+EcngTw/4D8L2XhObJutO%0AOnxvHdMerShgfMY/3mya63SfC3hnQfB7eHtD0DRtE0Jo2Q2Gn2aQQbWGGGxAByCe1O4H5XW3xW8H%0AfGP4A/A34E+GvEOk2nhTRtIstZ+JWsyzrFDp9vb5VLPk8yySqxI7CP3rmPCP7bvwztv+Crfi3x5q%0Aeia14S+Hl9ob+H7/AMR3cRexeezlfyXhk2qCsiqmBjgnqa+kPhD/AME6/gX8P/EPjDU/FHhnSvG1%0A1qfiObUbAXZkeGGB9pWKSFj5bFW3nODw1fWvjT4LfCzx98DX+G3iXwToF34JLIy6TDaLBDEyEFSg%0AQDaQQORijQD59+O3i3QPD/7af7LHjHWZobbw1c6hf2yalcHbFbvLZSPGzE9MhCB9aoft3+ItNX9h%0AG4tNP07xFr/iS9kj1HwudDsvtB+0wYdHYgjauG6817v8afgH4A+PH7PsPw48bWczaFb3dvdWrWz7%0AJYHgYFSrdRxlT7E16zpelWek+DdP0G0Qrp9nZJaQqTkiNECAfkKVwPws/aL/AGiP2gv2g/8AglpZ%0A/HHwl8PtI+HXgnwprFnqS6vdX5uNVN3bXCIzxRbFVVEgPXPFea/E/wCCWrfFX/gpP+zx4d1bxbrv%0Ainxb4h+Gp1q41u+RIppLqMh4WZUAGFYkDv8AN1r9zfC3wJ+HHhb9n3WfhfHoqav4L1S9urq903Ui%0AZ45DcStK64bOF3NwBwK8g8Rfs/axN/wVa+EPxi8P2ulWvgzw14MvtEu4VcI8ReS3MCondQEk6dPx%0AoA/MP4M+I/Eeu/8ABQLQPiT8RPDtxpXj/Q/ibYeFNce5JCov2GytBKCR0dlaQD/ar99ba7tL6OSS%0AzuYLpEkMbtE4YKw6qcdx6V4P8fPgZpnxc/Z58S+HdFGn+GvFt3cRajp+tQ26pIl9BgwSyMoy2Cqj%0AnPArl/2TfhT8S/hV8HPFMHxV1jStR8T674judWkt9MdmtrXzWJKpnpnPQUMD6noo70UhBRRRQAUU%0AUUAFFFFABRRRQAUUUUAFHeiigD4Nk/Yg03U/+Cw7/tV+IvGl1qhtrdP7H0AW20WsqhlBMm7lAGOA%0AB1Y195d6KKdwCiiikAUd6KKAPGvh58HLT4dfHf4o+MNK16+n07xpqEWoz6LJGBDZ3KxJE8iNnneI%0AwTwOa/KG6+NVh+yP/wAF5v2hLGTwb4r8fap8RbO3utC0rw+qSyPdSMHAkyw2JnIJ7A1+4deeWXwl%0A+G2n/HTU/ibbeD9H/wCE/wBQiWO61yWMyXBVeAFLEhP+AAU7jueOfs4/C3xhpGreLvjJ8WWgPxX8%0AcGI3dlA26LR7GLebeyQ9yvmOzHpuc+leJePv2j/2fviR+1d4r+B/xV+HpttG8PNLBqXiLxPAIIgy%0AqSDbbdzuCcYYY65r9FM85rldW8C+B9f1U3+u+DfCus3xABuL7SYZ5D/wJlJoEfGv7JHiKeT40/Eb%0Awd4B1rxP40+AOmW8MnhzW9bt5I2tblmIe0geTDTQheQxVcY75r64vNf8ZxftC6Z4dtfBon8ES6Y9%0AxeeJTfqvk3AJCwCHGWyADuyOtdjY2Fhpelx2WmWNnp1nGMR29rCsUafRVAAq1k+tFwCmTo0unzxq%0AcM6MoPpkYp9FID85vgZ/wT58BeErjxzr/wAXbWDxz4m8QeL9R1YQfa5GsooJrmR4V2EDL7Cu4+ua%0A+t/h98A/hL8Kvib4j8W/D3wdpvhXV9dt0h1I2K7I5VQ5Hy9jmvYqKLgFFFFAHnviD4YeEfE/x08F%0A/EbVbOeTxT4WiuItIuI5dqotxs8wMMfMD5a9+K2Na8DeDfEeu22qa94X0PV9RtwBDcXdosjoAcgZ%0AIrqqKLgc94o8K6F4y+GWseD/ABBYRXvh/U7RrW7tSMK0bDGB6e3piruiaPYeHvB+maFpcRg03T7V%0ALa1jJyVjRQqjP0FalFABWF4m8MeHvGXgu88OeKtGsNf0K7ULc2N5GHilAORkH3FbtFAHnvg/4T/D%0AT4fhv+EM8EeHPDrMcl7SzVW/76PNeh555pKKAAYVcKAo9qYIohcNMsUSzMMNIFAY/jT6KAFyaRcL%0Anaqrk5OBjJoooAjEMC3b3CwQrOww0gQBmHuetSUUUAFLnjFJRQAE561BFa2kEzyQ2ttDK33nSMKT%0A9SKnrm/GHi/w94B+GOueMvFeow6V4e0i0e6vrqU4CIgJP1PoO5oA6TgHOBn170V8WWX7UHxX8RWU%0AOu+Df2XPHmteDrgb7TULrUFtJ7mPtIsLRk4I6c133gT9qn4Z+LNa1TQPEban8MfGOmW5nv8AQfFk%0AP2OeOMDLSIWxvQc/MPSmM+laK+TNV/bZ/Z/tpRb+HvE174+1F2KQ2Xhexe+lkYdgFrEb9pb4v+JY%0AJ7j4a/sxeM9YsI2AW81/UF0wS8dFRoycjvzRYR9nUVyvgnVPE2tfC7R9U8YeHovCniS4h33ukxXY%0AuFtWycL5gA3HGO1dVSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACivO/ij8UvCPwf8AhZJ4x8bXN3baMtzH%0AbA20BlkeSRtqKFHUk8V4Dcftbz3+m3c3gf4A/G3xa1sWMvmaZDZR7QpO4M0jE9PSnYD7Corwn9n7%0A4qeOfi/8Ir3xV42+FGqfCWT+0Hh07TdRvhPcXEK4/fMAi7MnIxz0617BrGv6J4etbSbXNUs9Ljur%0AuO0tmuJAvmzSMFSNfViSAPrSA1qK8o+Mvxf8P/BX4SDxRrdnqOs3NzeR2Ok6PpyhrvUrqTOyKNSe%0AuFYk9gDXkcf7YXgMfsu6T8Q7nw34uTWL/W5NDi8Hw2ySap/aEbbXt9u4KSMqd2cYYUAfWdFeBQ/t%0ALfClf2RdH+Nmr6td+H/BGoTQweZfWxEtvNJIIhFIi5wwdtpxmvGdb/bR0zxX8RLXwH+zv4R1X4qe%0AKzIsmo6hcwyWGk6Xa5+eaWd0LEgZwoX8adgPuOivjK7/AGpfFHi3xTe6b8DfhgfiDo+jXHk+IfF2%0Ap6p/ZujW7xnE6wyeXI02zDZO1RkH610Hwz+Pfjn40/Fy0vPh58PIYPgpA7pdeMNYvzFJqLAED7HA%0AqHcm7HzswyO1FgPq2iuI8NfETwt4u+Ivjbwrot3LNrXhS9jtNZhePaIpJIllXB7gq45+tfMn7aP7%0AV+pfsrfCDSdZ0/wBf+L5tbFza2l3DOFjsbhYHkjaRNpLplQSARxmkB9pYPpRXwH8O/BP7WXxA+FW%0Aj+LPEH7TfhjR9O1uxjvLOLQ/BuHhEg3BN73JBwOOle4fDzxXpXw3+Imk/Av4hfGaX4g/FrU7aXVb%0ANtRtFtpprYuwCqqkjC7SMZzTsOx9F5BYqCCw6il718fab4lubD/gt54g8MXeuGHTdS+Gqz2mmyz4%0AWW4juLcFkU9WCF847Zrm08T/ALTvxj+LnxR0f4eeLvhv8NfCPhnxE2iJc3ekS6jqTukMMzSECWNV%0ABEwAHP3TRYR9y0V8q/BDwL+0r4W/aD8c3Xxc+KWleOvh+8McXhyCOw8i4MmFLyuAxCDO4Bctxjmu%0Ac+Kvxy+IuuftXXH7O3wP0/Q9L8aQ6cl9rXinxHIVttOt3OB9ngGDcy9eNyhfeiwH2dg5rxN/2gfh%0AtN+01YfCXRdSu/FPjCUv9uj0a0kurfTAqlj9pnQGOI8Y2swOTjFc1Z/Bbx3pn7JHjvwa3xj8VeI/%0AHniKzlC+JdTRALKd0CjyI0A2RjHALMfevF/2afFnhj4MHRvgT8Q/h/b/AAn+IrJ5UGq+cbmy8USL%0A96aO7YBjI+C2xwPQE0AffHeignJz1opAFIzIkbPI6pGoJZmOAB6k0tfLv7XvijV9E/ZEn8OeG7xr%0ALxN4y1ODw7psyZ3xNckqzrjuAP1oQH0hpOs6Nr+irqWg6tpmt6czsi3VhdJPEWU4YBkJGQeCM8V4%0Ab8cf2kPBnwI1Twnp2v6T4o8R6vr0krW+neH9Oe8uIreLb51y6ICfLQugJHPzCvzzm/ZW1T9mj9pT%0A4deB9H+Onxa0n4E+NNQfTbKDT7+JLnTNVkVnTcWjbfHI3HbBbvirHgT4geEvhF/wVn+JUXxe+Mmo%0A/Eu38J+D4LDwhJd2n2i+Iu5ma4t9sYw8g+zxc/KOadhn6g/D74v/AAz+KmhR33gHxpoPiPMXmS2l%0AvdKLq3GcESwHEkZBBBDKORXo9fKnwNvfDXjb4weIfH+h/AHVfhhBLaiO28RapElrcaspYkj7PHkK%0AvOdxOTnpX1XQxBXxb+3nJqK/sNWcGm2q6hNceNNDha0ddyXAbUIB5bDoQehB9a+0q+Of29riLTv+%0ACYPj3xA2qxaReaFLaatp80gz5lzbXCSxRD0LsoUH3oQI+vLAFNBsV2LFi3QbFGAvyjivmr9rD4Ie%0AHPjH+zDq8t3Z2UXjDw/bSah4c1Z4lMlpPGNwXcesbYwy9DXzRon7Y/xJ8c/Dfwb4p0zS/hv8H/AN%0A1BDLd634w1s3d9dIMeYILOBQckA4LPxnpXfeK/ij46/ag0yb4afA/Qtc0HwDqH+jeJfiRq1sbaNb%0Ac8SJYwn5pHYZwzFQPQ0JDPoz4C+J9L8XfsP+APHej6Hpmgf2v4bgv5LSztBBHHI8IZgFAHGc15r+%0AxLqN1rX7DkOtX8vn3994j1KW4f1b7QV/kor6W8KeF9G8F/DDQvB+gW32XQtIsIrKygPO2KNQqg+v%0AAr5Z+AHg/wCMfwq+PfjX4aXfhrQW+CSX9zq2heIkvG+0u1wUItfJ24GxlkYtu53jigR718RPjJ8L%0A/hRpi3Hj/wAZ6J4eldd0FnLNvupx/wBM4FzI/wDwFTWn8O/iH4e+KHwwtfF/hdNYTR7iRkh/tLTJ%0ArKVtv8XlzKrYOeDjBr52+P8A+zR8HfiZ8YNJ+IviPxld/D74kafaCHTNZg1KBNiAnBMM4KsAfTFe%0AX+Cvjp8Qvhh+1n4J+Dvi3xv4L+O/h7xNcPa6drPhy3NvqWlFY3kVrqJS8TRkIV3h15I4oGfolRR3%0AopCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo%0AoAKKKKAFwaSvxw+OPiH9rPxl/wAFvvCfh34ban4s8OeCdB1CCCaxt4Jo7G7syC813NLt8plJ2oE3%0Absjpiv2QPXrTsAlFFFIAooooA+J/+CgGtJ4c/wCCd95r8sqW8OneJdMuZJXbCoqXAJJPoKwbj9v7%0A4d6p+0h8Nfh18N/DPib4jp4s1EWcWv6fAVsEwjM7pIRiUKFJJU8Yr0P9uP4Zaz8XP+CYnxP8HeHr%0AGTU9ebT/ALVYWceN88sXzqgz3JGK+SPDXhr9o6x/aT1PVdB+CYg8Q3vh600fwT4nvru3j0nwtYGM%0AefK0QYy/aMqvyrHyeM4qkM+7f2i/HvjT4Z/CLQ/GXhSwmv8AS7DX7dvFIgtPtEsWmEP5zqgBPB25%0AI5Ar5vf4mfD79p//AIKW/DbRPCHizQfFPw98BaaPE141teI8VzqDjFuhGeWjJRyp+6yn0r7e8C+H%0AdU8NfBzRPD/iTX7nxfrNvbbNR1S7GWu5CSzMQf4cnAHoBXxt4N/YB+FFt8Zfi146+IukaJ4r13xd%0A4glvbF7S3NuNMtWPyQpj+LGMkdTmkgPjz9qv4v8Ainw3/wAHEvwp0y10XXviFYaN4cNx4b8KaczP%0AHNqU0bosrIMr8oyS5HyjPIzSftIW/wAUP2WP2c/gh8UrpdIvfG+oeNNT1DxJJfAGy0m71IRBCGPA%0A8pFVQ2eqE191eGP2Ffg34D/bT8GfGrwNFfaBq2h2dxbTWJfzo7zzQArFmOVK4PrndX1d4t8HeFfH%0Afg6bw94y0DS/EuiSuHkstQgEsTMvQ4PcUXC5+KX7Rnxg+B3w8/4IzeGvhP8ADn4weH/HXjnRNQ0q%0A+mu9Klj1DzJ4ryGW4uHxuQchmwwwemK+sP2If2jfC/xP/ZtHhDxl4j0zXviA+jXGp6ktnp0Vu40v%0A7ief5Kqqyf63AwDivrXxp+z18KPGn7Ofin4YzeEdH0Xw5r1r5F2umWiQuMMGDKQOoKg1Y+DfwC+F%0APwF+HT+Gvhp4T07QbSYD7ZMkQM12QuMyN1P096Lgfi7F+0N4U+GXgz4nXXwp+NcPgj4OWU17FoHg%0AbxYIdUOuymSQTxRwFTcRQO5cKcjrwa7j4V/HbVvCn7P/AIL1P9mXxj438X391bxtP8JJvD0uq6fZ%0ASNy8EN0EaWFBzjMmBX7FJ8I/hdHNfSJ8P/CQe8YtdH+zI/3pJyS3HOTXa6fpWl6TYx22l6dY6fbo%0AMJHbwKij8AKLhc/H/wDaFuv2nfCH7RGhax8KPA+r2XiH4v6dpl3f29tMVGjalY+Z58MjDgh45IRh%0Asj5favSviV46tf2vda+E3wv0jwZ4t0rxLZX09343s9U0mW3j0RfscsckbyOoBLO2xfXIr9RGCsys%0AyqSv3SR0pFSNZXdY41dvvMFAJ+pouI/FH9lX4S/Gfxf+1P4c8C/Ef4j/ABF03wd8KdOS+u/DD3Zt%0AFluJ5pVtYj5YV3hVIpCQ5OSRWN+1ZdzfEP8A4OEvhzpHwv1pNL8feHtAW1stXz/oyatGWuYrSRuh%0ADLLEGX0bmv1D+JX7NPgf4j/FJfHK6r4t8FeM2sxZ3Wr+GdTazmu4AciOUr98Ak4z0yfWum+HHwI+%0AGXwu8H2Gk+GvDtvJNbX0l+dSvwJ7ya6k+/O8pGTIcDn0AouO5+d3gmLxj8av+DgnwZ4w8aeCdc+F%0A2ueBPh7cT3+m3j7lu5ZdluWhbGGi3S5B56DmvhfwPrXxm0T9tP8AaU+F/gn4zfEDSfixqnjtI9B0%0AayWKUai0gYvc3BlRiscUYiGQRwRX9BVx8JPC0/7WVh8ZlbULbxfb6LJpDmGcrDcW7sj4kT+IgopH%0ApXgvjH9hz4S+J/2rtW+Nulan4y8EfErUQBc6toGptbsw2hTgDpkKuf8AdFO4E2j/ABC8O/sl/s3+%0AD/D/AO0N8a73xr491a4WNbi7VZL2/uJWxst4IwGMascDA6DmvBv2krS2+P37XsHgnwtrWk/CSX4e%0A2MWt+I/ifJItrqNmJVbyLOFyRlG2szhsjCDgZr6p+H37KXwo8A/EkeOZ7TVPHPj8DC+JPFF2b68j%0AHYIz/cGPSum8a/s4fBH4jfEj/hLfGnw78Pa94hMaRyXdzbgtKqHKh/7wHbNK4jwP4UePv2gPjP8A%0AsBaXqvgLxP4S07xlZa7daXL4n1bTTPa6za28pjS8hRflO8Dk4wWBxVjxN+zF8WPi3c+HbT42/G9d%0Ab8OaVqdtqa6ZoOgWtmz3EEiyIRP5XmoNygHYwJGR3r7V03TNO0Tw/Z6TpFlbadplrGI7a1t4wkcS%0AjoqgdBVyi4EcMSQWcMEZYpHGEUscnAGOT3NSUUUgCvn79ob4c+L/AB34D8Kar8Pp9IHjXwn4gh1r%0AS7TVUDWt40ecxP8A3c8YbIx619A0oODQB8S6f8Pvjt8a/j54A8TfHLQfDHgDwb4K1P8AtbT9A0m+%0AF1PqN8qkRySyhmCxoSGCjGSoq74B+DSaP/wVz+M3xDufh/pNloGo+GdKTSNXOmRhZLpZLk3Bjbbw%0A+DHuI5PGa+zSc0ZOMU7gB69aSiikAVzHjLwX4U+IXw51Hwl410Kw8R+HL5Qt1Y3ke6OTByD7EHkE%0Acg109FAHg3hf9l79nvwdeQXOg/CXwZDcQf6iW6sRdNF7qZd238K92hiit7SOCCKKCCNdqRxqFVQO%0AgAHAFPooAKO+aKKAPKfiF8DvhP8AFfWLC/8AiH4K0vxRd2Ufl20l2z/IuSduFYAjJPWtbwd8KPhj%0A8PTu8EeAPCPhaYrtM+naXFFMw9DIF3EfU16BRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA%0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIFQSl9i+YRgtjkj60tFFABRRRQAU%0AUUUAFKT9aSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKXGRRigBKKh+02v237N9qt/tP%0A/PLzBv8Ay61PigBKK+avHP7X37PPw88ZXXh7xD8QrOTW7WYw3dnplrLfSWzgAlZBCrbDyODivSPh%0An8Zfhl8YfD1xqXw68XaX4jS2IF3bxPsuLYkZAlhbDpnI+8BQB6bRRRQAUUUUAFFFFABRRRQAUUUU%0AAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA%0AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeafFf4s+FPg78MR4n8V/wBp3EUtwlrY2Gm2pnur%0A64c4SKJMgFmJA5IHPWvkqT9p39oXV/iHqujeG/gL4a068sNJ/tn/AIR/xF4sa31m4sQV3SLFHbyR%0ABjuAC+b1IBxX3hf6Tpeqy2T6lp1lqD2dwtxaNcQq5glU5V0yPlYHoRX5yftxeJPGfwi/aG+EfxU+%0AGXgybxj411qz1HwgljaITNObi2kljbC8t5bRB/8AgNNDR93fC/x/p3xS+A3hzx5pVrdWFrqluXNr%0AcgeZBIjtHJG2OMq6sM967a3u7O6luEtrq3uJIJPLnWKUMY2/usB0Psa/PH4O/Gnxd8Dv2XPC3hz4%0Ah/AD4q6J4e0m2Lar4j8n7SI5JZXlllkiVAUQM55zwK2PgL8T9Df4gftg+PdB1eDXfCFrqEWu6fcQ%0AymSKSM6ZHOcc8Z7gd6LAeh+G/wBqVPFf/BTjWfgRpHhOaXw3p2l3DyeKjcjy5b6B4lltkTHO0SZL%0AZ9OK+gviB8SPBXwt+H8/ifx1rtroekRnarSZaSZ+yRooLOx9AK/Nf4CT6X4S+IP7ImtX9zbSXXjb%0AR/EN/e6h5nySXU720vzOT12wmvrD9ov4V+MfGvjP4ZfE3wBaeGfF+p+C557iPwvruTZaoJQvzIwI%0ACzLt+VjkAnpQ0BtfDj45eNfin8VLNdB+DHijw98Mnjkd/FHiW4S0lmwp2eTarvYhjj75UgHp2r6W%0ArxL4N/G3SPizZ61ps2iap4L8d6DKIPEHhfVBi5sHPQg4G+M/wuBggivbaGIKKK8h+O3xPk+EH7MO%0Av+NrSyg1PVoHgtdLspmIS4ubidIIlYgg7d0gJwegNID17HNeZ+LfjP8ACjwJ4hfSPF3j7w3oWrJH%0A5jWVxdjzwuM52DLdPavkfwj42/am8Lf8FA/hx4f+NvifwXN8P/GOj3D6ba+H9J8oJfIEY28juzP8%0AodcNkA5PpXmsg0DT/wDgq1+07rU3wUb41eLLb+yBptkthHO9uj28KsQ8isI1ydxOOgNOwz7O8M/t%0AT/s/+Mvi3p3gTwz8SdK1XxbfhjZ6cltcJJMF6lS0YGB65r6Ar5l+D/h/W9a8ez+LvHn7Pnw9+F+o%0A2NuItEurL7PcXyqxy6lkQbBwvQCvpqkIKKKKAPBv2n9Z1rw9+wF8Vdd8P3d3Yarp+gT3MVzbf6yL%0AYhYsvuADXQ6tpqfE/wDYvm07TtcubVtb8OIbbVLSba6SGMMsgYf7QGfbNel6lpthrPh2/wBI1S1h%0AvtMvbd7e7tpVyk0bqVZWHoQSK+bPg14U8SfAn4QfEfwz421q3f4YeH7mS48I6peXAaaDTmV2aKY+%0AkZCgE8ncaYz5H/ZM/Z4+Enxi/ZabxP4ztb65+Jela7qGj6vrOm61KkzS21zJEsuMnYxRUOCDX0X4%0AB1Lxz8Df2xND+Cni7xPqPjv4d+K7WZ/A+takd1/YzwRtK9lcP0kXy0kKuMfdHAzX59f8E/viH4g8%0AJa78cfFl7r/grwf8CZ/iRqOpalrut3JFxqBkEbRR2ylgFXZtbdg5319iT/E+y+LH7Rnhr4+3cN/4%0AT/Z5+GEd1dWuvajatG+vXc8T2oaFSM+QqzMQw+8QPWmB9cfEPWfhl8I/hd4h+IfirQrK30y3PnX0%0A1no4ubmdzwMKqlmY1+dHhf8AaC8Ozf8ABSm2+OGo/Czx78JPgxc+Gk0iLxJf6MsMOpzM7ETXUcbE%0AwxruADEHhQTivrCH9tT9nrxHpsy6bqGteKbVWAljs9CkuVB7ZGMVwPxL+MfiH49fAzxb8J/g/wDB%0Afxlqa+IdOl0iTXfE+ktYaVp6SoYzMd4+faDuCgjkUkB9621zb3mnwXdpNHcWsyB4pY2yrqRkEH0q%0AauI+GvhKXwH8APB/gye/k1WfRtKhs5LuT70zIoBY129IQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB%0ARRRQAUUUUAfB/wC0T+25YfA39tj4ZfBLTvAup+M/EHigxvcNayAG2id9ilVzlm4YnsAK+8iOM1x9%0A94B8Fan8TtP8aaj4X0W98V2MJis9VmtlaeFCc4Vj0rr80AJRRRQAUUUUAHevlL9rHw8s3gL4e/Eu%0A41RNG0r4b+Ko/EmrXRZgRaJBLFKFC5LMRLgKOua+rap6jp1hq+h3WmapZ22oadcxmO4triMPHKp6%0AhgeCKaA/Ji7/AG4fiF8XvG9pF8JNBjuNAuJGi07w3Y2v2/VNZVgVD3UgBgs4MHJ3yq/+zWB8AP2a%0Afi54I8KftNfAKC/vPCWt+LbeHWJvE8GnCTTIzeQIbjT7dmxkqZHj3AYAGa/Wvw54J8H+ELZofC3h%0AjQvD6Mct9hskiLfUgZNdRnntRcZ+FniL/gnB8Z9Z/Zp+GeuSeN9a8SeJfC9rFv8Ahx4h1ESWMh8z%0AbLHFJvZIwUJOMgcetfpr4y0X4u+Bf2bPhtL8DfDmlNf+HIYRqngZ7mOOO9gKL5lvHMxCq6Nu2nIB%0Az1r6eyaSi4j5L+C/gL4qaj+1b4r+PPxW0fRfBWp6voMej6f4X0+6FzJbwLJG/mXEq/K0n7sDCkgZ%0APNfWlLmkpAFeX/GP4Xab8Y/gDq3gbUr+50n7RLDc2l/bjMlrcQSrLFIB3wyDjuM16hRQB8rfDn9n%0AbxJpXxu0r4i/F34pap8V/E+iWj2vh1JbNbW005HxvkWNTgyttXL4z8oro/h18Jte8JftwfHH4mah%0AfWE+keMXsf7NghLGWIQW6RtvyMDlTjBNfQ1FFwDJ9aKKKACiiigArE8S+HNE8X+AtW8L+JNPt9W0%0ALU7Zre9tJ1yk0bdVIrbooA+W/CX7F37M/gvxFb6ro/wr8PS3luQbZr6EXAhI6FA+QuMDGPSvqBYI%0AFsxbrBCtuF2iIINoHpjpipKKAI4oYLdCsEEUKnqEQKP0qXJ9aSigAooooAKKKKACiiigAooooAKK%0AKKACiiigAooooAKKKKACiiigAooooAKKKbuUSBCy7iMgZ5NADqKOtFABRRRQAUUUUAFFeI/Fj4wa%0Az8M9X0uDTPhL4++ItpcRmW8u/D8UbpZqP7wZgS3fA/OpPhV+0D8MvjD9qtPCusS2viG0/wCP7QNW%0Ah+zahbH/AGoiefqpIoA9q7180/HD9oPUPgh458MSar8NvE2t/De6OPEHi+w8t7fRNzqiNKm7eV3M%0AMkKQBkmvpboay9d0PSvE/grVfD2u2cOo6PqNq9teW0qgrJG4IIP50AT6bqVhrPh6y1bS7uG+028g%0AWa2uIW3JKjDKsD3BBq7Xw/8Asuaxqvw3+NfxG/ZZ8U3U90/hd01fwZeTHm50e5L7Y8nqYpI5R9GW%0AvuCgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK%0APzpcGgBKK+Q/iN+1RF4H8YfF3SLLwu2uzeDINMSExT4F3d3rSYtzx8pVUVj14cV9cxNK9jC80axT%0AMgMiA5CnHIzTsA+iivm3w3+1R8MPFX7Y+ofBfRzrc+sWxkij1hrMjTbq5iG6a2imz80kYxuGMZ4z%0AmkB9JUUHgEngDqSa8w8XfGz4Q+A7dpPF/wAR/CGiFTho5tSjaQfVFJb9KAPT6K47wL8QfBfxN8CR%0A+J/AfiCz8S6BJK0cd9aq3luykhgCwGcEHnpWd40+KvgDwF4C1/xD4g8TaTHbaPbGe7t4LlJLjqFC%0AiJTuLMzKoGOpFAHoVFfNHwa/ab8P/Frx7d+E77wZ41+Gvin7GNQ0zTfE9rHFJqdk2dtzCY3cFeDl%0ASQw7ivpOWWKCBpZ5Y4Yl+88jBVHbqaAJKK5Dx9468PfDb4O63458TTTRaHpdv51w0EfmSMCQAqqO%0ApJIA+teV/Cf9pPwN8V/GFx4Yt9L8W+C/F8dsLuLQ/FGnfZLm5tyNwmiwzI6454bI7gUAfQdFcF8R%0APil8PPhL4Rtdf+JHivS/COkXN2trBc3zMFklYEhBgE5wCfwrkvEn7RvwP8K+HLDVdV+JHhyS3voh%0AJZRafKb2e4U9CsUAd/0oA9qor4g1j9tIOllceB/gP8ZfFekTXSJJrNxpkOn2cMHV7hjPKrqirljl%0ARwK0tY/a8Ov+fp/wE+FHjn406pGmXvrSBbLSo2AJKm4nZC5BGP3asPenYdj7Norw34AeLvjL43+E%0AV1rvxp+HWn/DDXZb5xY6NBqAupFtxgBpSBgMTk4BPGK+ePEv7YGveKf2k/E3wg+Cnhrw6viHQr1r%0AHVNc8cawml2ccoJB8iMhpZ+h6Jg+tIR980V5n8L9P+KVh4Nuz8VvEnhbxHrM84ktX0GzaGCGLaPk%0AywBfnPOBXplABXy18bfiF47uf2gvAnwO+E2rw6D4v1mE6rruttaR3H9kaYjld4Rwy75CkiruHVa+%0AopZY4LWWeZxHDGheRyeFAGSa+OP2XLC48a/FH4y/tA6svmT+KPEcmk+Hyy/6nTLDFuoXPZpknf8A%0A4FTQz7CtIp4dKtobq4N5cpEqyzlQpkYDlsAADPXAqxR3opCFAzXJeOvGugfDv4U614x8TXQtNH0y%0A2M9ww5YqOyjqTz0FeD/G/wCJ/j0/F3w98DfgzHZx/EbXbQ3moa7epvtfD1huKm5df45DtYInc45G%0Ac1574j/YP+HPi74O+JrDxlrviTx58QdWsJEXxTr168jw3BU7JETJCKrYO0Z4pgfaOhaxZeIvBGj+%0AINOZn0/U7KK7tmZcExyIHXI7HBFZPi7x34K8A6TZ3/jbxXoHhOyu7lba1n1W+S3SaVjhUUuRlj6V%0AlfCnwnrPgX9nDwX4N1/V017VtG0uOyuNQQELP5Y2qwB5+6FH4V8g+J/D3g79o3/gqf4++Hfi5YNY%0A8O+A/BP2VdOkTcqXd/GA04HTekczAHqCARSA++45I5raOaF0likUMjqchgRkEH0p9fk6/wC2bpn7%0ANH7Pviv4J/FDVp9J+Mvg9Xg8PXF9p8k1pq9mGBt5d6g/eUOnI4Kivqnxb+0ZqcX/AATK8H/GPwLp%0Aulav4s8VWlhBothez+Vbtf3REexmAJCrJuB47U7AfXQ69683+HHxIsfiPD4yNlpt3pjeHfEc2i3K%0AXBBMkkcUUhcY/hImH5GvNvgb8f7f4iWt74R8e6dB8P8A4yaGxh8QeGLqYD5l/wCW1s5wJoW6hl7d%0AQK8k/Yn+KPhvx/rf7R+n6VdibV7D4m3U13CiNsSJ7e3ijYMRg5MEnA9KAPua4uLe00+4u7uaOC1g%0AjaSaVzhUVRksT6AAmvkH9nafxD8XPix4s/aI17VNYi8NX5k0nwLoa3TpaxaejgtdPECFeWRlXDEE%0AgKcYya7f9rbWNU0X/gnR8V7jR5za6hcaHLZRTg8xeePKLD3Ac16z8OfDth4T+Afg/wAN6bGIrKw0%0AmCKJR/uAn9SaBnI/FT48fDf4Ovp1n4t1iSTxDqQJ0vQNOga61G+5x+6t4wXYZ4yBivLLH48fGzxP%0AqsJ8J/sx+MbfSJULLeeI9Rh01z6Zil2sM+9b3xN/ZT+GXxQ+P1n8UdRuPFHh/wAe2tgLGLVtE1M2%0A0nkgkheh/vHmuPP7Lvj7Rb6W68C/tNfFfRiz7hbaxJ/acHHbazrxQgPof4d6/wCOPEPhW9ufHvgc%0AeBNUiujHDaDUY7sTRgA+YGjJAGSRg+ld/Xw7c/FX47/s/wDjjwzZfHaPwz4++Gms6kmmReNNBU29%0Azp88mfLF1bMANrYI3IzcivuM9qQjgfib8SvCnwk+DWq+OfGWoJY6RZKAqjmW5lY7Y4Y16tI7EAKO%0Aea+T774j/tiaj8KL/wCLWkeCvAvh7wxbQ/bbPwXqUcr6teWgyxZ3DYjlZeQvGO4r5r/by+JGr6f/%0AAMFGvgDpmoLcTfDTwdqkOs63Y20bTTXs8qtHDtiA+cruPHvmvrh/2ovFfiZhaeC/2ZPjN4h025hd%0AWu7+KysISpyORLcBgCP9mnYZ9H/DD4h6H8Vv2fvCXxE8OMx0jXtNivIUf78W9QTG3+0pJB9xXknx%0A2/Z10P4oxWvjDwxL/wAIR8ZNFJn8P+LNM/c3Acc+TOV/10LdCr5HevDf+Ce/iu5u/hD8Vvh5qOnR%0A6BfeEfHF7FHo/wBujuTYwzzPMkW+MlSFBC8E9K/QgfeoA+dP2b/jLqHxW+GWs6V4xsItE+KfhDUn%0A0fxfpqDaFuUAKzoP+ecqMki9vnr6Kr4l8L+dpP8AwXa+JthotjH/AGVq3w/0+91yZMfJdLI6IT7l%0AESvtqhiPiv8AaMt08Fftvfs2/FyyEVvPJrU3hbWJSQvm212EdAx/2WjfH+8a+1T1r5A/bTstOuv2%0AbfBtxfSLFNaePNNmsyTgmUGQAD8Ca+vz96gBKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFLjikoA%0AKKKKACiiigDz6x+JWgX37S+t/CtYr2DxHpukQ6o7Sx7YpoZWZAUP8RBUg/Ssz4SfE+P4peEPEF+d%0AFufD97o3iG70e8s5pd5D28hQuDgcNjPSuH+Lnwf8V+I/jt4F+K/wx8Q6Z4Z8faCpsb1tQjZ7bUtO%0AdizwSBQTkFnKnHBbtVHw/wDBLx34K/a81vxl4O+JIsfh34j1OTVPEXhO6sEm8y6dW3NBKVLRgu24%0AgEdKYF/45/tIeGPgtrvhfwuulXvjH4ieJZvK0Lw3YyBJZ+cb5HIPlpnjcQc4PpUfwo+N3inxj+0D%0A4n+GHj34eweBvFmkaRBqjJa6wt/E0M23CswRdrjd0r4e/b50DxX4U/bB+F3xD0O2tZ7DxXc2GgHU%0AblNyaPd20txJC7Hskn2ps46+XXefD74aftS/AnxV4m1e98XfA/x34+8ba1LeTyaxey219rLjJS1g%0ALhcKkYCqgOFCjgYosM+g9a/a+8D6N+0L42+G6+C/iXreteGCg1CbSNENzBlwxQBgR12nH0rntC+M%0A/wC0T8T/ANpTwlB4G+Dc3gX4NxyiTxDrvjSJ4b67jzyltCCApx3YtzXzX4d/ae0Pwt+3f8Q/E3jK%0AOP4Sajrvg6Wx1yx1p8rY63pzL5UYxkS+as0pTbkvsOM177+yLpv7RnjXwj4r+K3x58b3zW3iqJov%0ACvhu2g+zQ6fYjcI7kxADbJIDu5G7G3NPYD1Px/8AtQeDvC3xCuvA3hDQvEnxY+IVuMz6D4Xt/Pa2%0A/wCu0gyI/wAjXW6348+KE/7OGkeKvBPwolu/GN7Iom8M67qQspLNTu3M77TnGBxgZzXxZ4K1zxv+%0AxT4i0v4SX/gCw+Kula7c3N9Zav4VKHxBfIu6SSa7gJEkzKAcuobJzya+4fhL8bvh98afDmo3vgrV%0AJ3v9MlWHV9Iv7WS0v9OkOcLNBIFdM4OCRg4OKQjwfUfhp+1d8WLKePx18WtG+DWiyoVGl+AtPEt5%0Ag9N91cGQE/7qLXv/AMHfhdF8H/ghZ+EIvFXivxxcRO80+reIbwT3VxI3JyQAAPQAcVlW/wAVp5P2%0A+dT+DUunRLbweEotbgvgx3sXmaMoR6DbmvajxQM/MT4LfB/4o/FDRP2iNN+KHh26+HUerfEtNX0f%0AWHTdeXvkKiJ8rceSERNvHUtX6dHk0UUN3EeV/HDxivw//ZC+I3jFp47Y6ZoU8qTO2BGxXarZ9iwr%0A4Ig0rQPA/wDwT5/ZE+LXhy7ttQstJ8S2eqa1qKyAfaW1OYG9kZsckOzj8MV9g/tceF73xn/wTT+M%0AvhnTlle9vfDkvlLHEXZihV8BQCScKelfmT8OdF/a8+K//BHPw98JvCPwY8OeFfAkHhM2cN54o1AR%0AajqMnzMJoI92YiHJKlgtNDP1A+I37PWj/FH4nHxBr/xA+J1lpLWiwHw/o+srZ2LYx852J5m445+f%0AHNeAfAX4Y/CjxPrHx08ORfCvwVFfeEvFEug6ff6rBNqUk8ZtYJhJMbiRyW3SHO0rkAV6R+xNb+KZ%0Av2FfDHiTxz4o8ceJfGesQJJrQ8SyyeZZzoNrwxo/3EBJ6YzxXGfCX4ieCfAn/BSH9oD4Za9rNtpn%0AizxJ4os9R0XTnQiS9Sa1CbkAHIBhILdBxk0gMLWvgF4k8FfAbW9d+K/xy8Saf8OfDljNe3Phr4ca%0ANb6NaLbxguVGFeU/KOSJAT618pfH74Gfs/fs+fBnwt8U9Am8d+LH8feOtJS2v9W1mW5trO1aTzjG%0ASTgKSqnL7iSvUV+02q6ZY674X1LRdVt47zTL+1ktruCQZWWORSrKfYgkV8AWH7HfinxT/wAE3viX%0A+z78VvE8evaXLqkjeApyQz6RBGS1r83XIJIPoCadwOn8feK/CnxC/wCCjPwF0j4azRa94o8Lyy3n%0AiC+0xg0Om6bKkf7mZ14y4U7U7fjXa/tp6o9l+w/PZw3F1bf2r4r0PTZJ7SYxyxrLqlqrYZeQcEj8%0Aa+a/2cP2Qv2ifgD+y7YaT4D+K2j+GPE1w0z61pGr6XBe2c0wkZUmWZVd/mjCHGeM44r6PvP2a9e1%0Av/gm/f8Awg8ReP77V/Ht3KuqN4rnZnMWqLOtykyBuVjWVBhQOF4xSA8w/wCCiXjXWPhv/wAEl7zU%0AdDsU1eA6hp1pfmQlmW3Hzs4I6NmNRk5HNfMml/tKeIPHn7SHwB+OfxD+E+sfDb4U+HNJlmi1e2vF%0AuryaKaIxCe4UIClmD835mv0M0D9nq2X/AIJ03PwK8d61J4/nvtKmt9U1XUyZPtM75Ik+bkANtx6Y%0Ar4a+EH7E3x6+HPwi8QfDmzufhlpMWs6fLo+q+OrqWbUdVk05tyCGBJQyxqIzgJwoNNAfTXwv0jwh%0A+15+y54ph+LcOkfFTwdbeO7v/hHbto/LzDAw8lwYyOQGIz3BOa5P9mf4QfC7wb+3z+0fofhbwlot%0AxomkX2ntp89yguW02aS3BltomfOxRhHwD1c1teDv2RPiB8HfCV34P+Bvx21fwX4Du382TTbzTIry%0AS2mb/WSQvIrFC3XAIAIHpX0x8Hvg94d+DXwwuNB0W4vtX1LUL19Q1zWtQkMl3ql24AaaVySScKoA%0AzgBQBSuBy0HjCP4kfGT44fAHxHpcemWlnoyQQT20hDXVle2wV39mXzdvFflN4D+K/iC4+AOr/Dzw%0A38bPHWm+OPD2tv4T8M/D3wnplnbT38qF2W7keSGRhHgnef8AYHrX65TfCCE/t52XxstNWuLSUeGX%0A0e+05HIS7JcMkjDodoAA+lcH8Rf2Q/hN45+KjfEjR7O8+HPxYWTzYvGPheU2d9uxz5hQjzQe4bIO%0AKEwLn7Ovgzxv8Gv2YLK0+NvxS1Lx3451O5N1eXOpSRhYJGAxawBVXcFGB3y2SMAgDP1k/sl/Gr4c%0AL4s1w/DvV9OuRvbU3mW0u42/2pUKyK4+tReFP2cfEx+N3hnxr8W/i9r/AMVpfC7NJ4csLuyitre1%0AmP8Ay8OsYAklGBhmyRgV1Gr/ALJv7Neu+JdQ1jVvgn8Or7UL6cz3ksuiQkzSE5LN8vJJ6mgDwn9m%0AvxHDpH7avj/4V/Dv4h6l8UPg1Z6Jb6haXF7IbptCu3klV7NbrgyIVRGAbJHqc19+nrxXP+GvCnhf%0AwX4Vh0Pwh4e0fwzo8X+rstMs0t4l4x91ABmt+hiPM/jRrFzoP7I/xI1azQyXcHh668lQcEu0TKP1%0ANYn7Ougf8I1+wt8K9KZXWUeHre5mD4z5k6+e+cf7UjV1/wATfDE3jT9nfxr4VtnaO61TR7i2t2HB%0AEjIdn/j2K8e/ZS+JNh41/ZY0bwxd3P2bx54MiGg+JtIuTturSa2/dK7I3zbJECOrYwQ/BoA+maKU%0AjFJSA+CvjfrHiv8AZ6/bC8SftAad4RvvG/hLxB4Rj0rUDASTpF1ASYZHABxbthNx7ZY182j45ftt%0AfGmzh1DwJ8Rv2Z/hh4eaQB5ob1rq5Qc9RK+M+2K/YYgMjKwDKRggjIIrxXXf2b/gD4m8QTatr3wd%0A+HOp6nM26a5m0G3LyH1J28mncD8pdYf43eHbrVbfXf27vEPj/wCJl4GTTPCPw+8PWszPKwG1TuR9%0Aq56nsK6P9kn9kn9paDx38XdT+LXxZ8feA/E2r3Vm+o6rpUFs8+rAxJIyiaWJgAh+Q7QORX62eDvh%0Ar8Pfh5ZSW/gXwT4X8JRSHMo0rTYrYyH/AGiijP412+SRRcdz85PHv/BOL4Ta/rFl43j8Q/EHXPiB%0ApOZre91zU0v1vAqP+4kjaMKVYt26HpWhD+zn498Y/wDBI3wf8PFWDwJ8RNE8QSa3pFtMN0VnJHqU%0A1xBE3+ztZPpX6FUUXC58+fGv4A+Efi/8Mb251TRYY/iPbaTKmi67Y3clnc29yYiEHmxsCU3Y+Vsj%0AHauD/Yn/AGf7z9nz9juHw/4k0fRdP8falqE154hu7Cd5zeOWIR3kYkltvpgc9OtfX9FK4jy342fD%0As/Fj9lPx18Po71tOutZ0mW3tLof8sZ9pMTn2D7Sa8j+Af7QOka94ctvhr8R5rfwR8Y/D0K2er6Jq%0AL+UbgoNongLY3xsBnNfV1eW/Er4KfCv4v6bbW/xF8EaD4nktubW6urVTcW//AFzlxuT8DTA43wl8%0AdJNY/bZ8XfBPXvDsemarYWEeq6LqVleC4g1CyfK7nwP3cgdJBtyeAD3rw34x/Dn9urxB+08+ufCn%0A41eBfCvw7t7lJLLRLnRd7SoCCUnYtls9ypX8K+mfhh8CfhX8HJtWn+H/AITstGv9T2/b74ky3NwF%0AGFVpWyxUdhnAr12gD46s/wBnn4lfEHx5oOvftFfFG28W6To92l9Y+EPDumCw0r7SgO2WYu0kspXJ%0AwN4HPSvS/A/xnk8f/tkfEjwDoOnWl54Q8IWsEN1r8UhYSag4Vnth2+RWGfcGvSviB4Un8c/B3XfC%0Adv4h1nwpJqdv5B1XSZTHdW4JGTGwIKkjIyD3rJ+FXwr8G/Bv4N6f4J8E6d9i0y3LSzzyMXuL2d2L%0ASzzSH5pJHYlixJJJouM4nx1+zV8L/iJ+1J4M+L3iWz1OfxT4bB+xxxXhS2mIHyGWPHzFOo5Fe/Nj%0AaQeQeoNNo70hHy34L/Zp0/4ff8FFvGPxp8I6smi+HvE+iC21bwzbxFYpb0Mp+1ZzjcQDnjqat/tY%0AftCn9mz9ll/G1l4em8W+JLzUodO0TR41Y/ariTJAO3kDCn8cV9M1WurKyvlhF7Z2t4IZRLEJog+x%0AxnDDPQ8nmmB8o/sseA/G0Wm+LPjd8WLZLD4nfESaO7udLTO3R7JEVLezGe4VQzf7TGvrelJya5Hx%0A3430L4c/CrVfGXiX+0RomnKrXTWNjLdyqrOqZEcSs7AFgTgcDJpAfLX7WAh8U/Gn9m34WrEl7Pq3%0AjcardW+8jbbWaje5x2zMtfaZ+9Xwz8D7bWvjj+274j/aV1nRtW0TwPp2lL4f+Hlnq1q9tcTxFmku%0Ar0wyAMgkLRqMgE+XX3MetMBKKKKQBRRRQAUUUUAFFFFABRRRQAVx/wAQ/FcXgT4C+NPGkyCVND0S%0A5vxGf4zFEzhfxIA/GuwrG8ReH9I8V+AtZ8Ma/ZpqGiarZyWl9bMxUSxSKVZcggjIJ5BzQB+Gf7En%0A7Z37VPxV/wCClVv4L+IFne694AvRd75Law2w2GSjRu0wJVlVcDAOcvX7y1wfw8+GPgP4U/Dqx8Ke%0AAPDWm+G9EtFIiht0yxycks7ZZieOST0Fd5QAUUUUAFFFFABRRRQB4V+0f8J7n4z/ALJ+ueDNMmtr%0AXxB50N7o1xOSEhuonDIxIBI4LDj1r441X4i3Hhn/AIKU+Lde+IPgzx14++Inh7RbHTPh94f0XTi9%0ArK81nE1zcLM5EalpnlUseVUngkYr9PKbtXzfM2rvxjdjnH1pjPzZ1T9jnxR8WP2d/FPiX4hL4W0f%0A41eI/F9n4pigkha5s9Ma13+TZluGYbZXDMBycccV9DeA/C/7TWpfFPQ9X+J/i/wH4X8KaQCq+G/C%0AFvLKNROAFMs0gTYgAGECH619RUUriPHfih8Bfhn8Yda0PVfG2jTXOr6OHXTb+1uWgngVwQyhl7HJ%0AyKm+FfwM+GXwXh1v/hX/AIeTSbrWJVl1S8eUyT3bLkKXY9cZOPrXrlFAHz74k+Ffii//AOCifw/+%0AL+iazYWGgad4eudJ8QWMiEzXiMZHh2np8rvnn0r6DJyaSigAooooARlV42R1V0YYZWGQR6U2OOOG%0ABIoUSKJBhURQFUegA6U+igBqIkUeyNEjX+6qgCuOl+Hfgef4zw/ESbwvpEvjiKzFnHrLQA3Cwgkh%0AA3pkn867OigA70uT60lFAC5PrRkmkooAKM0UUALk0lFFABR3oooAXOaSiigAooooAM8Yr5++I37N%0Avw/+IXxCi8awz694H8eRqqjxD4auxa3MoXoJOCrge4z719A0UAfPvw6+DfjrwP8AFZ9d1j48+PfH%0A2iGJ0XQ9ZhjMSkjAbepzkdelfQVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABTJI45oGiljSWJhhkdQQfqDT6KAGxokUKxxIkUajCoigAD2Ap1FFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUuDSdKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKXB9KAEopcGmhlLMAykqcMAehoAWiiigAoor5b/au/aj0X9lT4HaZ411zwfr3i6C/1%0AJbCGLT3EaxyMrMpkcg7QduOh60AfUlFfC/hn9tO7v/BWn+J/E/wO8b6V4VngSabWNFvItVhtlYZB%0AkChGXjrxX1x4F8feD/iX8PLPxV4H12y8QaHcj5J7duVburKeVYHgg0AdhRXAePvib4T+GkXhh/FV%0A3Na/2/rUekaYsUW8yXMiO6qeeBiNua7g3VqryBrm3BjP7wGUfJ9fSgCeivNdB+Mfww8UfEXxZ4U8%0AP+M9F1XXPDMRk12CCbcLFR1Lv90Y7815bp/7YXwE1P4u2vg6y8WzTXVzdfZLbUfsTiwmnyf3azEY%0ALcH2oA+nKK84+KnxS8L/AAf+E1x4v8Vm+ls1njtra0sYfNubueRgkcMSZG52YgAZ718o6/8At1x+%0AFPCt74g8Sfs6fHXR/D1mokvNQn0uLZChIG4/PnuKLAfetFeLfDD4+/D34rfs0f8AC2dFuNT0Pwcp%0AcSz67a/ZHjCAFmKkn5eeD3wa4DWP2z/gHp1yttpPiLU/Gl6y7ktvDumSXUjD2yFH60AfVFFfG/hv%0A9snw5rnj14tZ8BeK/h54HSB3PijxayWKOwxhI4Bud8885GMVs6r+3H+yzo9ibi4+LegzoJfKAt0l%0Acs/90Db156U7AfV9FcxZeNfCuoSeHY7bWrNrjXrU3OkQMxWS6iC7iyqecAcmtibVdLttdttMuNRs%0AYNRuFLQWsk6rLKB1KqTk/hSAv0V5ofilocf7WifCCa1vYNek0D+2Le5cAQzxiTYyKepYck+wqv8A%0AFv4v+Bvg/wCAE1bxlqE8cl7J9m03TrJPNvb+ZgcRwxjlm9+goA9UIxSV8cfBz9pLV/E/7SkXwd8R%0AfBj4i+AZZNIfVdL1bXZlmW5gLOf3hVAEfg4XJ4xX11Zalp2pRSPp1/Z36I5RzbzK+1gcEHB4NFgL%0AtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUuOM0lABRRRQAUUU%0AUAFcB8U/iT4a+EPwA8UfEfxdc/ZtB0SzM85X70hyFSNR3ZmZVHua7+vzJ/4KyXF9B/wSvKWks0cM%0A3i3TUuhH0dPOBw3tkD9KAPY/D3iP9sH4neDdK8beHo/hT8OvD9+gutO0jVYZru7ntmAMZmdSVRiO%0AcLjGa6TwZ8e/GOi/HvSvhR8f/CWn+CvFOsll8N67pkxk0jWnGT5UbsSUmwP9WxBPYcivfPhuF/4Z%0A48B7Fwv/AAjtljH/AFwSvFv2w/DGn6//AME//H2p3E8en6v4asG17RdRPD2l3afv4nVux3IB70xn%0A06eDTWZUjZ3ZURRlmY4AFfkh44+KPxh1b4s+I5bb41a/4E0bStU0PS3sdN0eOcW0d/FcbbqQvKmQ%0AZIkXAz98V7/J+y94i8d6z/wi/wAWP2pvF/xD0e2Kz3/hjT1j08zKfu+dsldthweo59aLCPsnxp41%0A8LfD34Wav418Y6zZ6F4Y0yDz73ULlwI4kyADnvkkAeua1dD1rSvEvg7Tdf0O9h1HSNQt1uLO5iOU%0AljYZDCvz6/ay/wCEX+JnxD+E37GGiX0QuNama717TVDEwaba2ks0W49MNJHEOvetPwF8S5PCP/BD%0AbV9WjvG0nW/CNjdaG7PIA0NzHP5aDI6HbJGaLDP0FxzSkc15/wDDGXUIP2Xfh5N4jvhPqq+F7BtS%0Au5pPvzfZo/MdmPq2Tmvm74Sazp/gz/gov+0T4Mi1i8uPCv8AZFj4pV7m682CzMgfz9h5wp3A4H92%0AgR9mySLFbSTSEiONSzEegGa434fePvD/AMTPhjbeLfDEs82kTzzQo00ZRt0UjRtwfdTX56aF+0P8%0AV7z4kWXx81LXdPl/Zr1zxhN4Uh0aO3ObO3XbHHqRl9Gl84EY4CLzzX0D+xlcXdt8E/iJ4R1C7tJr%0Azw78Rdbs/JgbcIIjfTNEv0KYIoA+u5p4La0ee5mit4VxuklcKoycDJPvUnBQMCCD0I71+Wfxy0z4%0A6/tQ+CPjNefDjX9W0Dwn4N1SLTPDXh3T2CP4lvYJo5J5J33ACNRs2r3y3THP6IaD4it9C+DHg9/H%0AuqaN4b119HtRqEV9fRwhLjyU8xAWYZw+4cUAd5RVDT9W0nV7d5tJ1TTtUiQ4Z7S5SVVPuVJxV+kA%0AVwlj8SPCmo/tB638MLS8nk8XaTpcWpX0HkN5ccMrFUO/GMkg8ZzXeDrXxvZa7YeCv+CzninTvEUk%0AemxeN/BFq2g3lw4SO4ls5cSwKT/HicEDqQD6UAfYruscTSOyIqjJZzgD618v+FP2hru3+PPxO+H/%0AAMX9CsvAGp+G7KXWNKuVnLwatpMalnuUYk5KDG5RyOeOK+U/+Cqfi/xBZfsk+DfB/hDV5Pt2s+I4%0A11PT9Nld72S3UqSyxxguUGTk4rmfiLLcftI6F4K0n4O6V4l1mz8C+CNUGr+MNR06WzTUC+lT2yWM%0AXmgPI0kkik/KAMHmmkB9qeKv2mbW31bS9H+Gfw58ffFbW9S09b60bStNkisFickK0l06iJeQeN2a%0A8q1/xR+1z4s8YWHg6PxJ8L/gZ4n1jTZ7nRtO+zf2pdy+WrE73O+MYA5xjpXun7L3xA8L/Eb9i7wh%0Aq3hZZ4odOthpN9BPbNDJbXNuqrJGQwGcEg5HHNeT/HfXn8J/8FR/2UtTFqLtNYu7/RWAlCmPzYWG%0A/HcDfn8KAM/4Qj46fDb9rfwR8Mviv8Wn+KFxrnhfUdW1Gc2EUMcU0U9siJHtQHaBK/BrpP2YNc1v%0AUv2h/wBqqw17Ur26lsfiMEsbe6mZjBbnT7MqEUn5UJLHjjOa8u/apl+Omkf8FKP2dNS+Ev8Awidg%0AmtW2o+Hn1PVUkmEDSxi4ZnjVTwFtiQc8nA4zmuZ+BXwp8SfC/wD4LhfES48deJ9U8e+I/E/gSz1Q%0Aa61r9mtxKJZ4pY1jDMAAscYGTmgZ+nlFFFIQV8gftTaVo3iP4mfs2eGPE0dtceG9Q+Iw+22t0qvB%0AcmPT7ySON0bhwXRTgg8gV9f15N8ZfhHonxl+EP8AwjWqXt3o2o2t5Ff6JrNn/wAfGmXkTbo5k6cj%0AkEZGQSO9NMDS8E/CD4afDfxHr+p+BPB2jeFLjWSp1GPTYfJgmK5x+6X5F+8egGa+AfiR4utv2dP+%0ACp0dv8NprDRPDPi99Jm8caXBAPslpNcX8VuZ9gG2KSRGGSACS2epzXvi+C/21v7CTQD8V/hQtso8%0An+3v7Hma9MfTeYsbfMx/t9a39I/ZI8BQfs8ePPBvibVdZ8Y+IfGimTxJ4s1Bx9vubjrHKhyfLEbB%0ASignbtHNCGcz+1bY2nin41fss+DmvGgubz4kJqCiCbZKY7eyuWZlIOcZZAfr718A6/4p+E2h698X%0Ab/xlpXxn+IXjy6+Kt5oMOmeFPGuowR3TvFbyQRPHFMEVSJQnAH3TX6F/DX9nr4laZ+0b4a8cfF/4%0Anad8QrfwfpU+neEYLbTDbyIJjHunuGLHdKFjCjGeGPNfJ95+x/8AGL4S/wDBVHxt8cfhd4c8JfE+%0Ax8Tu13pia9qz2aeHr2QbXlaMRv5mNqkEc9u1NAXvjFpnhv4W+D/g3+zp4Q+FE3wri+LurWFv4j1m%0AwlEjyjzElurGa5yZHkdEdCzMcgnnmvZviI+gfEz4teCP2WPg9pemjwv4T1C21Lxxqen26i10aGAE%0AQ2qso2i5kbcxA+YBST156PWv2PZfiH+xfceBfif8RdYv/iLe68PET+LdNUq2magZN/8AoikgrEuW%0AQDI4PauV+HP7Nv7S/wAFfAH/AAiHw0+MPw2k0MTtM91q3hiT7bdO3WSZ1Zt7n1zQB6H+29bapY/s%0AgWnxE0fTJdbu/AHiOw8TvYRvtM8NpcJNKM/7qGvDPgx+0n+0b+0R+zNe3Wm/ALwj4jgubyW2Grap%0Aq9s2kShHXAaLfufbweM5I4r7T+G3hH4nWvgfXtM+NfjLw58QpNRZkWHT9HNrbxQsu1oiCx3g88kD%0ArWR+z/8As++E/wBnP4eeIfCXgq/1Gfw5qOtTanbWd0cixMpyY0OeV/KkB83/AAcm8Rad+2H8ffB/%0A7QWreEdT0618KaRerpQgVdGt7Qm4DGO3cbAoZSpJHO3mvWPjp4yHwc+C/wAOPGXwztvC3h7wnc+L%0A9ItNams9NhSBtNu7mKFmUquFGJAdwxS/tJfsvw/HWXTtZ0DxnqXw68YQWjadeapYw+Z/aGnu257W%0AVdwyuckHPG4+tek/Fr4OWfxM/Ym1/wCDVtrE3h+1vtGTTrbUUgEr23lhQjhSRkjaO9AG/wCIPhL8%0ALvG/xH0vxt4p8F+HPFet2lp5On3eq2iXSwRsd3yJICqk9cgZ96+TfgP8Nvh7H+2Z+0p4G13wD4W1%0AT+yPGVtrejG90WB47VbiwtiPJBTC4YH7vcV9kfDvwxf+Cvgd4V8Japr1z4nv9J06O0m1W4j2SXRQ%0AY3kZODjHftXnB+FOuaf/AMFDf+Fv6Fqtnb+H9W8NrpfiXTJSwknliZzBNHgEZAKqckcLQI8m+IOu%0AeGvBv/BYT4Rah4wvtL0jSb/wTqGm6BPeMsUUV608BCKxwA7IrgDqc4rxz4q/DrTPi5/wWI8V+GJP%0AFGqeF/Hul/DrS9W8B6raXDq1jOl1fCV1UHayN+6Dgg5AHpX1n8bf2c/B3x08efCvXvFN5e28vgbx%0ACusWUMKgrcuqsAj88Lkhv+A139/8K/BOo/tIaH8WJ9L2eONJ0uXTLW+jfbutpGDGNx/EARkemTRc%0AZ+Yf7RPxS+Pvwzu/hv8AE7x38F9euviF4A1VTP4n8JQG60vWtLf5LtJAm4wlomkYK+AGPAFd/wDs%0A+fF74d/tPf8ABVjV/iUskk9lpfga3PgCx1eBonjMsn+nTQxuBukUrCpdRkBuvNfp3d21tfabcWd5%0ABFc2k8ZjmhkXcrqRggj0xXzlrH7I/wAB9W+GGheFY/B0Wi2uiySSaPeaXKbe7sWkOX8uQcjJA49h%0ARcBPiJfftTXfxHu9J+GXh34ZaV4cLBIPEGuXDzTBSoy3ko3Yk8Edq/NH/hGfjJ+yZ+3Mnj6D4ueA%0A/iH4s8aavHaT/CXw8k0aXH2iZRLcx2sZCxmMFpC5UD5Tk1+gM37Gfg28sLSx1P4nfGnUtMtz8lrN%0A4obaR/dPy8ivXfht+z/8I/hNK1x4I8G6bp2puu2TUpV826ce8jc/lQB67aySzaZbSzxG3neJWkiJ%0A+4xAJX8DxU9FFIQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjt5dvJJsZ9qk%0A7R1OOwpaM8YoA/Bn9nX9oT9qz4p/8F9NYtNQPiqz+F63tzbX+iyWW2xs7SI7UbJXhi3Oc5O72r95%0AqascaSOyIiM5y5VcFvr606gAooooAKKKKACvlz9tD4T3/wAaf+Ca/wATvA2jQG41+TT1vNKQAZae%0A3kSZVGe52EfjX1HQcFCrAEEYIPegD8r/AIL/ABi+OXx4/Y78J6D4OMHwU8JaFpq6V4r8f64Ee6e4%0Atx5csNlE+EBUKMyMGALAY457bV9Tm/aO0TQf2d/hf4g1vxb8LdIngi+IvxEvyrf2jFCwZ7KF1VVe%0AWUrtdlAADHA4zXtL/sT/ALPdx4hvLq/8J3up6ZcXrXh0O81OaXTEmc7ndbYt5YLHk8c19OaHoWie%0AGfCdloPhzSNO0PRbOMR2tjY26wwwqOgVVAAp3Hc/Hr/gpJ4O8W/DvTH8c+END1TUfA3ibT9P0XxA%0A2lYWfTp7S5iktJg2CASBKm4g8sK3v2eLXRv2WfhpqHjDX9T8QfFb9pf4nKk+l+E/7SN5exW//LtB%0AIRwijO53wMFiAABX6p+NfBfhj4ifDDVvBvjHSbbXPDmpRhLyznGVkAYMPyKg/hXE/DD4B/CD4Nm7%0Al+HPgTQfDd7dALc30FupuZVHRWlPzEe2aLhc/JvwZrf7Q2vf8F8PHviDTfhl4cuvilY+ALayvzqt%0AxJBpmlMyxLJPHyXljzkLhwWDDmuE074HeNPil+1h8bfhN418RePxq+t2X/CRaJBbWEmk+Hjq8Mq+%0AenlksZEKCEKxfB5OK/cGx+GvhHTf2idc+Klpp7R+M9X0uPTb2880kSQRlSq7egwUXn2rvic0XA/P%0APVPGH7QfxJ/Zr/4Ulpf7PmreDdauNFj0bU/EfiDUHTTLMCIRSTwGPY8uMFlAcdByaxv2W/hjaaD8%0Abf2jvh1HPq2tWmi6BYeFhrmpu0kl2fImWXLtyeccZ4r9JSciokihikkeKKON5DmRlUAufU+pouI+%0ATvgt+zlbeGP+CZ6fAP4lQWGqWO6/juPsrfKIpbmWWJkPZ1V157EV4j/wTv8AhVqHgHS/jrrkvjTW%0AfGWj6r47vLTTbvUkxLMlpK8HnOeAzNszkAZzX6R/UAj3qvaWlpYWYtrG1trO3BJEUMYRQSck4Hqa%0ALgfnT8SvhN+0v8P73xjovwY1e6v/AIZeJtcfWrj+yJ4bfXNLkdcTQwvNHIjxyYQ/6vcCvXmvF9E+%0ACPiPxRunuf2Y/iR4u8VK3lrqvxY+IM5tY2P/AC08iBYVYA84GPrX7D5+lG40XHc+WP2Y/wBnm6+B%0Avh/xVqOtazFqXifxPdrc39pp7SrpunhQdsNtHI7sFGeSzEnA5r6moopCCvN/iX8JPh/8XPC1tpXj%0AvQU1RLSXzrG6ime3urOTGN8U0ZDofocHuK9IooA8I+Hv7Nnwl+GvieTX9G0S91jxG6GP+19f1GbU%0AbmNP7iNMzBB/ugZ717hbWtrZWa21nbW9pbr92KGMIg/AcVPRQBn6ZpOlaLYyWuj6bYaVbSStK8Vn%0AbrEjO33mIUAEnAyaxNd8DeEvE3jTwx4i17QrPU9b8O3DXGi3cu7fZyMMFlwcZx65rq6KAKs9lZXN%0A9a3NxZ2txcWzl7aWSJWaFiCCVJGVOCRkdjSmysjrA1A2lqb8ReULnyl83Zknbuxnbkk4zjmrNFAB%0ARRRQAUUUUAFFFFABRRRQAUd6KKADOaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo%0AAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA%0AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi%0AiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=)