We will explore diamonds dataset, history, and use EDA to create quantitative analysis.
library(ggplot2)
data(diamonds)
names(diamonds)
## [1] "carat" "cut" "color" "clarity" "depth" "table" "price"
## [8] "x" "y" "z"
ggplot(aes(x=carat, y = price),
data = diamonds)+
geom_point()+
coord_cartesian(xlim=c(0,quantile(diamonds$carat,0.99)),
ylim=c(0,quantile(diamonds$price,0.99)))+
stat_smooth(method = "lm")
More weight of carat, the higher price, but not go any lower
By using linear model, we may have off predicting the price(too bias!)
# install these if necessary
# install.packages('GGally')
# install.packages('scales')
# install.packages('memisc')
# install.packages('lattice')
# install.packages('MASS')
# install.packages('car')
# install.packages('reshape')
# install.packages('plyr')
# load the ggplot graphics package and the others
library(ggplot2)
library(GGally)
library(scales)
library(memisc)
## Loading required package: lattice
## Loading required package: MASS
##
## Attaching package: 'memisc'
##
## The following object is masked from 'package:scales':
##
## percent
##
## The following objects are masked from 'package:stats':
##
## contr.sum, contr.treatment, contrasts
##
## The following object is masked from 'package:base':
##
## as.array
# sample 10,000 diamonds from the data set
set.seed(20022012)
diamond_samp <- diamonds[sample(1:length(diamonds$price), 10000), ]
ggpairs(diamond_samp, params = c(shape = I('.'), outlier.shape = I('.')))
What are some things you notice in the ggpairs output?
library(gridExtra)
## Loading required package: grid
plot1 <- ggplot(aes(x=price),
data = diamonds,
)+
geom_histogram(aes(fill='orange'))+
ggtitle('Price')
#scale_fill_brewer(aes(color='qual'))
plot2 <- ggplot(aes(x=price),
data = diamonds)+
geom_histogram(aes(fill='red'))+
scale_x_log10()+
ggtitle('Price(log10)')
# scale_fill_brewer(aes(color='qual'))
grid.arrange(plot1,plot2)
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
library(scales)
cuberoot_trans = function() trans_new('cuberoot',
transform = function(x) x^(1/3),
inverse = function(x) x^3)
# ggplot(aes(carat, price), data = diamonds) +
# geom_point() +
# scale_x_continuous(trans = cuberoot_trans(), limits = c(0.2, 3),
# breaks = c(0.2, 0.5, 1, 2, 3)) +
# scale_y_continuous(trans = log10_trans(), limits = c(350, 15000),
# breaks = c(350, 1000, 5000, 10000, 15000)) +
# ggtitle('Price (log10) by Cube-Root of Carat')
head(sort(table(diamonds$price), decreasing=T))
##
## 605 802 625 828 776 698
## 132 127 126 125 124 121
head(sort(table(diamonds$carat), decreasing=T))
##
## 0.3 0.31 1.01 0.7 0.32 1
## 2604 2249 2242 1981 1840 1558
Add a layer to adjust the features of the scatterplot. Set the transparency to one half, the size to three-fourths, and jitter the points.
ggplot(aes(carat, price), data = diamonds) +
geom_point(position='jitter',size=0.75,alpha=1/2) +
scale_x_continuous(trans = cuberoot_trans(), limits = c(0.2, 3),
breaks = c(0.2, 0.5, 1, 2, 3)) +
scale_y_continuous(trans = log10_trans(), limits = c(350, 15000),
breaks = c(350, 1000, 5000, 10000, 15000)) +
ggtitle('Price (log10) by Cube-Root of Carat')
## Warning: Removed 1691 rows containing missing values (geom_point).
# install and load the RColorBrewer package
# install.packages('RColorBrewer')
library(RColorBrewer)
ggplot(aes(x = carat, y = price,color=clarity), data = diamonds) +
geom_point(alpha = 0.5, size = 1, position = 'jitter') +
scale_color_brewer(type = 'div',
guide = guide_legend(title = 'Clarity', reverse = T,
override.aes = list(alpha = 1, size = 2))) +
scale_x_continuous(trans = cuberoot_trans(), limits = c(0.2, 3),
breaks = c(0.2, 0.5, 1, 2, 3)) +
scale_y_continuous(trans = log10_trans(), limits = c(350, 15000),
breaks = c(350, 1000, 5000, 10000, 15000)) +
ggtitle('Price (log10) by Cube-Root of Carat and Clarity')
## Warning: Removed 1693 rows containing missing values (geom_point).
ggplot(aes(x = carat, y = price, color = cut), data = diamonds) +
geom_point(alpha = 0.5, size = 1, position = 'jitter') +
scale_color_brewer(type = 'div',
guide = guide_legend(title = 'Cut', reverse = T,
override.aes = list(alpha = 1, size = 2))) +
scale_x_continuous(trans = cuberoot_trans(), limits = c(0.2, 3),
breaks = c(0.2, 0.5, 1, 2, 3)) +
scale_y_continuous(trans = log10_trans(), limits = c(350, 15000),
breaks = c(350, 1000, 5000, 10000, 15000)) +
ggtitle('Price (log10) by Cube-Root of Carat and Cut')
## Warning: Removed 1696 rows containing missing values (geom_point).
ggplot(aes(x = carat, y = price, color = color), data = diamonds) +
geom_point(alpha = 0.5, size = 1, position = 'jitter') +
scale_color_brewer(type = 'div',
guide = guide_legend(title = 'Color', reverse = F,
override.aes = list(alpha = 1, size = 2))) +
scale_x_continuous(trans = cuberoot_trans(), limits = c(0.2, 3),
breaks = c(0.2, 0.5, 1, 2, 3)) +
scale_y_continuous(trans = log10_trans(), limits = c(350, 15000),
breaks = c(350, 1000, 5000, 10000, 15000)) +
ggtitle('Price (log10) by Cube-Root of Carat and Color')
## Warning: Removed 1688 rows containing missing values (geom_point).
m1 <- lm(I(log(price)) ~ I(carat^(1/3)), data = diamonds)
m2 <- update(m1, ~ . + carat)
m3 <- update(m2, ~ . + cut)
m4 <- update(m3, ~ . + color)
m5 <- update(m4, ~ . + clarity)
mtable(m1, m2, m3, m4, m5)
##
## Calls:
## m1: lm(formula = I(log(price)) ~ I(carat^(1/3)), data = diamonds)
## m2: lm(formula = I(log(price)) ~ I(carat^(1/3)) + carat, data = diamonds)
## m3: lm(formula = I(log(price)) ~ I(carat^(1/3)) + carat + cut, data = diamonds)
## m4: lm(formula = I(log(price)) ~ I(carat^(1/3)) + carat + cut + color,
## data = diamonds)
## m5: lm(formula = I(log(price)) ~ I(carat^(1/3)) + carat + cut + color +
## clarity, data = diamonds)
##
## ======================================================================
## m1 m2 m3 m4 m5
## ----------------------------------------------------------------------
## (Intercept) 2.821*** 1.039*** 0.874*** 0.932*** 0.415***
## (0.006) (0.019) (0.019) (0.017) (0.010)
## I(carat^(1/3)) 5.558*** 8.568*** 8.703*** 8.438*** 9.144***
## (0.007) (0.032) (0.031) (0.028) (0.016)
## carat -1.137*** -1.163*** -0.992*** -1.093***
## (0.012) (0.011) (0.010) (0.006)
## cut: .L 0.224*** 0.224*** 0.120***
## (0.004) (0.004) (0.002)
## cut: .Q -0.062*** -0.062*** -0.031***
## (0.004) (0.003) (0.002)
## cut: .C 0.051*** 0.052*** 0.014***
## (0.003) (0.003) (0.002)
## cut: ^4 0.018*** 0.018*** -0.002
## (0.003) (0.002) (0.001)
## color: .L -0.373*** -0.441***
## (0.003) (0.002)
## color: .Q -0.129*** -0.093***
## (0.003) (0.002)
## color: .C 0.001 -0.013***
## (0.003) (0.002)
## color: ^4 0.029*** 0.012***
## (0.003) (0.002)
## color: ^5 -0.016*** -0.003*
## (0.003) (0.001)
## color: ^6 -0.023*** 0.001
## (0.002) (0.001)
## clarity: .L 0.907***
## (0.003)
## clarity: .Q -0.240***
## (0.003)
## clarity: .C 0.131***
## (0.003)
## clarity: ^4 -0.063***
## (0.002)
## clarity: ^5 0.026***
## (0.002)
## clarity: ^6 -0.002
## (0.002)
## clarity: ^7 0.032***
## (0.001)
## ----------------------------------------------------------------------
## R-squared 0.924 0.935 0.939 0.951 0.984
## adj. R-squared 0.924 0.935 0.939 0.951 0.984
## sigma 0.280 0.259 0.250 0.224 0.129
## F 652012.063 387489.366 138654.523 87959.467 173791.084
## p 0.000 0.000 0.000 0.000 0.000
## Log-likelihood -7962.499 -3631.319 -1837.416 4235.240 34091.272
## Deviance 4242.831 3613.360 3380.837 2699.212 892.214
## AIC 15930.999 7270.637 3690.832 -8442.481 -68140.544
## BIC 15957.685 7306.220 3761.997 -8317.942 -67953.736
## N 53940 53940 53940 53940 53940
## ======================================================================
Let???s put our model in a larger context. Assuming that the data is not somehow corrupted and we are not egregiously violating some of the key assumptions of linear regression (for example, violating the IID assumption by having a bunch of duplicated observations in our data set), what could be some problems with this model? What else should we think about when using this model?
Response:
# install.packages('bitops')
# install.packages('RCurl')
#library('bitops')
#library('RCurl')
#diamondsurl = getBinaryURL("https://raw.github.com/solomonm/diamonds-data/master/BigDiamonds.Rda")
#load(rawConnection(diamondsurl))
The code used to obtain the data is available here: https://github.com/solomonm/diamonds-data
diamondsBig <- read.csv('diamondsbig.csv')
set.seed(20142014)
#diamond_samp <- diamonds[sample(1:length(diamonds$price), 10000), ]
diamondsBigSample <- diamondsBig[sample(1:length(diamondsBig$price),10000),]
#create models, from m1 to m5
m1 <- lm( I(log(price)) ~ I(carat^(1/3)),
data = subset(diamondsBigSample, price < 10000 & cert == 'GIA' ))
m2 <- update(m1, ~ . + carat)
m3 <- update(m2, ~ . + cut)
m4 <- update(m3, ~ . + color)
m5 <- update(m4, ~ . + clarity)
diamondsBig <- read.csv('diamondsbig.csv')
set.seed(20142014)
#diamond_samp <- diamonds[sample(1:length(diamonds$price), 10000), ]
diamondsBigSample <- diamondsBig[sample(1:length(diamondsBig$price),10000),]
#create models, from m1 to m5
m1 <- lm( I(log(price)) ~ I(carat^(1/3)),
data = subset(diamondsBigSample, price < 10000 & cert == 'GIA' ))
m2 <- update(m1, ~ . + carat)
m3 <- update(m2, ~ . + cut)
m4 <- update(m3, ~ . + color)
m5 <- update(m4, ~ . + clarity)
Example Diamond from BlueNile: Round 1.00 Very Good I VS1 $5,601
#Be sure you've loaded the library memisc and have m5 saved as an object in your workspace.
thisDiamond = data.frame(carat = 1.00, cut = "V.Good",
color = "I", clarity="VS1")
modelEstimate = predict(m5, newdata = thisDiamond,
interval="prediction", level = .95)
View(modelEstimate)